National Repository of Grey Literature 80 records found  beginprevious49 - 58nextend  jump to record: Search took 0.01 seconds. 
Study of molecular oxygen titration into nitrogen post-discharge
Řehulková, Blanka ; Mazánková, Věra (referee) ; Krčma, František (advisor)
A huge number of experiments were carried out in the field of nitrogen post-discharges during the last 50 or 60 years and they were supported by many published theoretical works. Some papers were focused also on the nitrogen active discharge, post-discharge itself, or they focused mainly on the kinetic processes running during the post-discharge period. This experimental work shows how oxygen titration into post-discharge will influence nitrogen flowing post-discharge. Experimental data were obtained by optical emission spectrometry, Spectra were measured in the range 300 - 700 nm at laboratory temperature of 300K. Discharge current was kept constant at the value of 120 mA relating to the total discharge power of 145 W. Pressure was kept constant, too, at the value of 1000 Pa. The nitrogen of 99.9999 % purity (further purified by Oxiclear column) flow was adjusted at 0.8 l/min. Flow of oxygen (99.95 % purity) through he titration capillary introduced to post-discharge from down stream direction, was kept at 4 ml/min. Both gas flows were controlled by mass flow controllers. The optical emission spectrometer Jobin Yvon TRIAX 550 with 300 gr/mm grating equipped by liquid nitrogen cooled CCD detector was used for the spectra acquisition. The integration time of 1 s was used at all experiments. The position of titration tube end introduced into post discharge from the down stream side was set from 5 to 25 cm with respect to the end of the active discharge; the step of 1 cm was used. The optical emission spectra were measured at positions from 3 to 29 cm with respect to the active discharge end. The following nitrogen spectral systems were identified in the spectra: 1st positive, 1st negative and 2nd positive. Besides them, some bands of NO-beta system were found. The intensity profiles along the post discharge were obtained for selected vibrational spectral bands of these spectral systems and changes in the vibrational distributions of upper electronic states of these spectral systems were determined.
Diagnostic of nitrogen post-discharge by optical emission spectroscopy
Kabeláčová, Kateřina ; Slavíček,, Pavel (referee) ; Mazánková, Věra (advisor)
The aim of this thesis is diagnose post-discharge nitrogen plasma with optical emission spectroscopy. There is long interest of investigated of nitrogen post-discharge plasma and study how to use it in theory as well as in practice. All results were measured with method of optical emission spectroscopy of post-discharge plasma. Discharge was generated by direct-current voltage generator with flowing regime. In this thesis was used for different series of experiments. First experiment was performed with adding water vapour into argon plasma. Measuring was processed at constant current 140 mA, voltage 1.5 V and pressure 1 000 Pa. It was changed flow rate and for each individual flow rate was measured in range 1–25 cm from end of active discharge. Second experiment was with adding nitrogen into argon plasma. Measuring was processed at constant current 140 mA, voltage 1.5 V and pressure 1 000 Pa. We were changing flow rate of nitrogen (0,2 sccm, 0,4 sccm and 0,8 sccm). For each individual flow rate was same experiment with changing distance from active discharge. Third experiment was about adding mercury vapour into nitrogen post-discharge. Measuring was processed at constant current 120 mA, voltage 3.5 V and pressure 1 000 Pa. Measuring was performed with two configuration: with diaphragm and without it. Last experiment was about adding air into argon plasma. Measuring was processed at constant current 140 mA, voltage 1.0 V and pressure 1 000 Pa. Temperature of outer face of tube was measured by thermocouple and infrared thermometer, was measured for last two experiments (argon – air and nitrogen). During experiments with pure nitrogen was visible phenomenon called pink afterglow which is manifested by noticeable increase pink coloration. Optical emission spectrums post-discharge was take at various range of wavelength. At argon with water vapour was 280–600 nm and at adding nitrogen into argon was at range 320–500 nm. At added mercury vapour into nitrogen was 320–600 nm. For experiment argon – air was wavelength range 320–600 nm. From results of experiments were designed dependencies of calculated intensity from measured spectra on distance from active discharge. Also were constructed dependencies of measured temperature on distance from active discharge.
Study of laser mixture in the large pressure region
Morávek, Matěj Jan ; Hrachová, Věra (advisor) ; Kudrna, Pavel (referee)
This work studies discharge plasma in a mixture of gases, similar to that used in the so-called CO2-lasers. This mixture consists of CO2, N2 and He. The effect of the mixture composition and discharge parameters (especially pressure, in the range of 266 Pa - 100 kPa) on the distribution of energy in the vibrational levels of nitrogen was examined. This is important parameter for modelling of the discharge plasma. The effect of the mixture composition on the degree of dissociation of the CO2 molecules was also studied. The relative concentration of CO was applied to find the conditions leading to a minimal dissociation of the carbon dioxide. Measurements of radial profiles were also made. Results from two discharge tubes made from different materials were compared. Two types of discharge were utilized to acquire a wide pressure range - low pressure DC glow discharge in the range of 266 Pa to 1330 Pa and dielectric barrier discharge in the range of 5 kPa to 100 kPa. Both discharges are used in commercial CO2-lasers. We observed a descending dependence of the vibrational temperature on the pressure and a big step caused by increased occurrence of standing ionizing waves in the mixtures with low nitrogen ratio. Vibrational temperature in the DBD was markedly lower than in the DC GD, because of the...
Study of Chemical Processes in Titan Atmosphere Initiated by Discharge in Electrode Configuration Like Gliding Arc Discharge
Töröková, Lucie ; Zahoranová, Anna (referee) ; Žabka,, Ján (referee) ; Krčma, František (advisor)
The aim of this work is the study of plasma processes and the synthesis of organic compounds due to electric discharge generated in gas mixture corresponding to the composition of the atmosphere of Saturn's largest moon Titan. This study focuses on the mimic of Titan's atmosphere at atmospheric pressure and ambient laboratory temperature. The chemical composition of Titan's atmosphere is very similar to atmosphere of prehistoric Earth. Many articles have been published with theoretical model-research, and laboratory experiments are the pursuit of their interconnection. The main aim of thesis is the identification of synthesized gaseous organic, amino, imino and cyano compounds by use to various analytical methods such as the PTR-MS, FTIR and GC-MS. The OES and electric measurements were applied to the determination of selected electric discharge parameters. The gaseous products and radicals formed in an atmospheric discharge fed by different mixtures of N2:CH4 (0,5 up to 5 % of CH4) operated in a flowing regime at the total gas mixture flows from 50 to 200 sccm at different discharge currents from 15 up to 40 mA were determined. A part of experiments was carried out with admixtures of CO2 and hydrogen. This first part of results has been obtained using OES in dependence on the gas mixture composition and supplied power. The bands of the nitrogen second positive and the first negative systems, CN violet system and Swan system of C2 were recorded. Besides them, atomic lines H, H, and C (in the second order) were also observed. These spectra allowed calculation of rotational and vibrational temperatures. FTIR in situ analysis of the gaseous products showed presence of various nitrile compounds and hydrocarbons in all experiments. The HCN, C2H2, NH3 were the main products generated in our system. The dependences of their concentrations on various experimental parameters were measured. The other part of this work was devoted to estimate the influence of CO2 traces addition on the reactivity in the gaseous mixtures mentioned above. Besides the main products mentioned above, CO2 and CO were detected and also some more complicated oxygen molecules has been confirmed but not estimated because of FTIR spectra complexity. In the case of hydrogen traces addition into the reaction gas mixture, no other compounds were determined. Impurities of CO2 as well as hydrogen have a great positive influence on the production efficiency of the major generated compounds at all conditions. The more detailed gaseous products analyses were carried out using the in situ PTR-MS. A huge number of different molecular structures containing nitrile groups (–CN), amino groups (–NH2, –NH–, –N CH3CN > C2H5CN. Besides them, many other hydrocarbons and nitriles were detected. Presence of all compounds was studi
Study of Post-Discharge Processes
Soural, Ivo ; Hrachová, Věra (referee) ; Brablec, Antonín (referee) ; Krčma, František (advisor)
The decaying plasma was studied by the optical emission spectroscopy. DC discharge created at 45 – 200 mA in Pyrex and Quartz tubes in flowing regime was used. The emission of three nitrogen spectral systems (1st and 2nd positive and 1st negative) were studied in time evolution for pressures of 500 – 5 000 Pa at two wall temperatures – ambient and liquid nitrogen (150 K inside the decaying plasma). Results showed that all three nitrogen systems (respectively N2(B, v), N2(C, v) and N2+(B, v) states as their origins) had their population maxima called pink-afterglow in the afterglow part. These maxima decreased with the increase of pressure for all systems, and moved to the later decay time. Maxima increased with discharge current (respectively power) and moved to shorter time. Populations at temperature of 150 K were measured due to the experimental arrangement from 17 ms, only, and thus pink aftergow maximum wasn’t observed (only at 5 000 Pa some maximum was recognized). Populations were smaller at 150 K that populations measured at laboratory temperature at the middle decay time (50-100 ms). At the late time, the populations were higher at lower temperature at lower pressure. Higher shifts (in intensity and decaytime) of pink afterglow maxima were observed in Quartz tube in comparison with their values in Pyrex tube. Besides the populations, rotational temperatures of selected bands of three observed spetral systems (for 1st negative 0-0 band, 1st positive 2-0 band and for 2nd positive 0-2 band) were measured. Rotational temperatures were monitored from presumption that this kind of temperature is equal to temperature of neutral gas (at local thermodynamic equilibrium). Results from 1st negative and 1st positive system showed strong decreasing of rotational temperatures up to about 10 ms at post-discharge begin, then temperatures were constant up to 20 ms of decay time and after that they grew up. Temperatures increased with the increase of current. The part with decreased temperature correlated with pink-afterglow part of post-discharge. Unfortunately, rotational temperatures of 2nd positive system had bad reproducibility and the time profile shape was opposite. Experimental results were compared with numerical kinetic model created by group of prof. Vasco Guerra at Instituto Supetior Técnico in Portugal. Several sets of conditions for simulation at 500 and 1 000 K in active discharge were applicable for the calculation corresponding to the experiment. Comparison of numerical simulation and experimental data done for N2(B) state demonstrated that maxima populations in pink afterglow are depended on the temperature difference between active discharge and post discharge. Maxima populations were supposed in pink afterglow disappeared if the same temperatures in active and post discharges were supposed. Temperature in active discharge is higher at higher apllied power, as it was showed from rotational temperatures observation. The results clearly showed that real temperature profile must be included into the kinetic model.
Spectroscopic Study of Post-Discharges in Nitrogen and its Mixtures
Mazánková, Věra ; Kapička, Vratislav (referee) ; Hrachová,, Věra (referee) ; Krčma, František (advisor)
Presented thesis gives results obtained during the spectroscopic observations of post –discharges of the pure nitrogen plasma with small oxygen admixture and in the nitrogen – argon mixture and the effect of the pink afterglow in it. The DC discharge in the flowing regime has been used for the plasma generation. The decaying plasma was study by optical emission spectroscopy, mainly in the range of 300–800 nm. The first positive, second positive, first negative nitrogen spectral system and NO spectral systems were observed in measured spectra. The band head intensities of these bands have been studied in the dependencies on experimental conditions. Simultaneously, the relative vibrational populations on the given nitrogen states have been calculated. Two discharge tubes made from different materials (PYREX glass and QUARTZ glass) were used in the case of nitrogen plasma containing low oxygen traces (up to 0.2 %). These experiments have been carried out at two wall temperatures for the determination of the temperature effect on the post-discharge. The discharge tube around the observation point was kept at the ambient temperature (300 K) or it was cooled down to 77 K by liquid nitrogen vapor. The total gas pressure of 1 000 Pa and the discharge current of 200 mA were conserved for all these experiments. The relative populations of electronic states were calculated in the dependence on the post-discharge time. The dependencies on oxygen concentration were given, too. The results showed no simple dependence of vibrational populations on oxygen concentration. Generally, slight increase of neutral nitrogen states populations was observed with the increase of oxygen concentration. These observations were well visible due to the intensity of nitrogen pink afterglow effect that was well visible at all oxygen concentrations. The pink afterglow maximal intensity was reached at about 5–10 ms at the wall temperature of 300 K in the PYREX tube. The molecular ion emission was strongly quenched by the oxygen and as this was dominant process for the pink afterglow emission the pink afterglow effect disappears at oxygen concentration of about 2000 ppm. The temperature and wall material influences were observed, too. The post-discharge in nitrogen argon mixtures was studied only in the PYREX tube at the ambient wall temperature of 300 K. The power dissipated in an active discharge was constant of 290 kW. The experimental studies had two new parameters – total gas pressure (500 Pa – 5 000 Pa) and the argon concentrations that were varied in the range of 0–83 %. Also in this case the dependencies of relative intensities of the bands given above were obtained and further the relative populations of electronic states as a function of decay time, total gas pressure and on argon concentration were obtained. The pink afterglow effect was observed at all applied discharge powers and total gas pressures. At the highest argon concentrations, especially at lower pressure, the pink afterglow effect disappeared. The presented experimental work is one of the hugest sets of experiments in the nitrogen with oxygen traces and in nitrogen-argon mixtures. These data can be used as a very good fundament for the further studies using wide numeric modeling of the post-discharge kinetic processes.
Measure of atomic nitrogen concentration in the nitrogen post-discharge
Josiek, Stanislav ; doc.Mgr.Pavel Slavíček, Ph.D. (referee) ; Mazánková, Věra (advisor)
Clean post-discharge nitrogen plasma and nitrogen plasma with different traces have been focus of scientists for more than 50 years and there were published many articles on theme active discharge, post-discharge, processes and reactions. It is possible to create kinetic models from all these information and then calculate concentrations of elements in atomic form. This diploma thesis is focused on measuring of concentration of atomic nitrogen for different conditions (decay time, pressure, admixture). The titration method by nitric oxide in post-discharge was used to determinate of concentration of atomic nitrogen. All experimental results were obtained by the optical emission spectroscopy. Optical emission spectra were taken in the range of 300-600 nm. DC discharge was created in a quartz tube in a flowing regime. The flowing regime was chosen for this experiment because of better time resolution of decay time, order in milliseconds. Decay time was in the range of 16 – 82 ms for individual experiments. Nitrogen flow was 400 mln/min. Nitrogen oxide flow was in the range of 0-10 mln/min and it was added at the selected post-discharge time. Trace of methane was 0,006 % of the whole volume. Total gas pressure was set on values from 500 to 4000 Pa. The output of discharge was set on constant value of current 150 mA and the output has changed according to the amount of pressure. Nitrogen first positive, second positive and first negative spectral systems, NO spectral system and NO2* spectral system were recognized in all measured spectra. Absolute concentration of atomic nitrogen was specified by the method of titration of NO. Traces of methane increase dissociation of molecular nitrogen and therefore increase the concentration of atomic nitrogen. This thesis brings new results into longtime research of moon Titan and new results into study of processes in nitrogen-methane plasma.
Plasmachemical deposition and characterization of hexamethyldiloxane thin layers
Blahová, Lucie ; doc. Mgr. Vít Kudrle. Ph.D. (referee) ; Krčma, František (advisor)
Thin films have been used to modify surface properties of various materials for many years. Plasma Enhanced Chemical Vapor Deposition (PECVD) is one of the possible methods for their preparation and this technique is applied in this work as well. An organosilicone – hexamethyldisiloxane – is used as precursor. Thin films are created on the surface of the substrate using mixture of precursor and oxygen in radiofrequently excited capacitively coupled plasma. The aim of the thesis is to find the optimal deposition conditions for production of transparent thin layers with good barrier capabilities, low oxygen transmission rate especially. Thin film depositions were realized for different compositions of the deposition mixture in continuous and pulsed mode of plasma with varying supplied power and duty cycle values. The deposition process itself was monitored in situ by optical emission spectroscopy. Thin film coatings were analyzed to determine their physical chemical properties (infrared spectroscopy, surface energy) and barrier properties. Using optical emission spectroscopy, important particles were identified in the deposition plasma. Vibrational, rotational and electron temperatures were determined from relative intensities of chosen fragments. Composition of thin films was studied by infrared spectroscopy. The best results of oxygen transmission rate were achieved with layers prepared from deposition mixture with high oxygen content. It was possible to improve barrier properties by performing deposition in pulsed plasma mode with 20–30% duty cycle. In this diploma thesis, optimal deposition conditions of thin films from hexamethyldisiloxane with low oxygen transmission rate were determined. It is possible to use these results in practical applications, such as corrosion inhibitors for archaeological objects. Optionally, they can be used in various industry branches where it is desirable and feasible to prevent oxygen access to the material by deposition of barrier coatings.
Influence of humidity on total sterilisation effect of dielectric barrier discharge
Kramárová, Petra ; Bartlová, Milada (referee) ; Kozáková, Zdenka (advisor)
The main subject of this diploma thesis is the study of the effect of humidity on the total sterilization effect of the dielectric barrier discharge. Sterilization is a process which can eliminate all forms of life. The plasma sterilization is one of the methods that are suitable for sterilization of temperature and chemical sensitive materials. This sterilization method was proved to be effective on the wide spectrum of procaryotic and eucaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Dielectric barrier discharge (DBD) operating at atmospheric pressure was used for the sterilization of the samples. The discharge was generated in dry air and in humid air. The plasma power densities were 2 160 mW.cm-3, 2 279 mW.cm-3 and 2 760 mW.cm-3 (dry air) or 2 326 mW.cm-3 and 2 850 mW.cm-3 (humid air). Humidity of air was achieved using a wash bottle filled with water through which air flowed into the DBD reactor. Fungi spores of Aspergillus niger were used as model microorganisms. Whatman paper No. 1 was used as the carrying medium. When comparing sterilization efficiency of humid and dry air operating at the same conditions, the higher sterilization effect was observed in humid air. The sterilization effect of the DBD generated in air was compared with results obtained during plasma generation in argon and nitrogen. At the same conditions, the highest sterilization effect was observed in argon, followed by humid air, nitrogen and dry air. It was found out that in our experimental setup the active species are probably the main inactivation mechanism. The influence of temperature on the inactivation of microorganisms was completely negligible. The discharge parameters were studied by means of the optical emission spectroscopy (OES). Plasma treated samples were analyzed employing scanning electron microscopy (SEM). Damage of the microorganisms due to the effect of plasma as well as plasma effect on the structure of the carrying medium was evaluated.
Study of nitrogen post-discharge by mercury vapor titration
Teslíková, Ivana ; Brablec, Antonín (referee) ; Mazánková, Věra (advisor)
The aim of this master thesis is a study of nitrogen post-discharge by mercury vapours titration. The nitrogen post-discharge is investigated for many years theoretically as well as for a practical use. The object of this master thesis is a study of kinetic processes ongoing at titrations of mercury vapours during the nitrogen post-discharge at different pressures and applied powers. All experimental data were obtained from an optical emission spectroscopy of nitrogen post-discharge. DC discharge in flowing regime was chosen for measurements. The first part of experiments was carried out at the constant discharge current (100 mA), voltage (1300 V) and wall temperature (300 K). The total gas pressure was varied in range of 500-3000 Pa at nitrogen flow in range of 0.12-0.68 l/min. Nitrogen flow values were arranged to obtain constant nitrogen flow velocity for all gas pressures. The second set of experiments studied power dependencies. The current was varied in the range of 50-200 mA for constant voltage 1300 V. The total gas pressure in this case was 1000 Pa. Mercury vapours were introduced into the system by titration tube at different post-discharge time. The nitrogen pink afterglow effect was well visible at all experimental conditions. This effect corresponds to the maximum intensity of light emission, which expresses as considerable growth of characteristic pink radiation in the post-discharge time. Optical emission spectra of post-discharge were taken in the range of 320-780 nm. Besides three nitrogen spectral systems (first and second positive and first negative), the mercury line at 254 nm was recorded in the second order spectrum at 508 nm under these conditions if mercury was added. This spectral line is excited under post-discharge conditions by collisionally induced resonance energy transfer from nitrogen highly vibrationally excited ground state metastables and it opens an unique technique for their monitoring. The dependence of relative intensities on decay time for mercury spectral line and selected nitrogen spectral systems at different titration positions were measured. The relative intensities of nitrogen bands decrease with increasing of mercury line relative intensity for all total gas pressures. The pink afterglow phenomenon shifts to the later decay times with the increasing of total gas pressure. In the case of experiments at different power, it can be seen that with decreasing power mercury spectral line intensity decreases in post-discharge time. The first detailed tests of the unique detection for highly excited of nitrogen metastables were completed. However this master thesis is concentrated on the basic research which supports better indication of kinetic processes and reactions leading to transformation of excitation energy, this new knowledge should be applied in future also in technologies based on the long-lived metastable induced reactions.

National Repository of Grey Literature : 80 records found   beginprevious49 - 58nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.