National Repository of Grey Literature 70 records found  beginprevious21 - 30nextend  jump to record: Search took 0.01 seconds. 
Biodegradable bone implants based on iron
Müller, Petr ; Kazda, Tomáš (referee) ; Sedlaříková, Marie (advisor)
The present work deals with the comparison of the properties of metallic biomaterials in terms of their suitability for use as a temporary metal implant. In the work is judged biocompatibility of materials, they are comparing the corrosion rates and the influence of additives in the iron alloy to change biocompatibility and corrosion rate. In a part of this work is suggesting a method of preparing biodegradable metallic samples with different alloying elements and determine the methods, processes and measuring the corrosion rates. Part of this work is the chapter dealing with the function and effect of iron in the human body and any complications that may occur when a surplus caused by the release of part of the implant during its degradation or corrosion products. The outcome of this work is sort of created an iron-based samples in terms of their electrochemical corrosion potential, corrosion rate of samples exposed in various corrosive solutions, spectroscopic elemental analysis and outputs from the microscopic observation of the structures.
Experimental manufacturing of multiphase Ni-Si based layers
Rončák, Ján ; Moravčík, Igor (referee) ; Jan, Vít (advisor)
The diploma thesis deals with the preparation of the composite material based on the NiSi system using powder metallurgy supplemented by the sintering with the usage of SPS method (spark plasma sintering). Theoretical part contains general information about the mechanical-chemical process and sintering, while materials and methods used for experimental observation are explained in a separate chapter. Experimental part explains the procedure of the experiment and selected parameters of individual processes. In the experiment, two powder mixtures were created in order to form the NiSi phase in the maximum possible amount of powder material. After successfully reaching presence of the NiSi phase in the range of 87 to 89 wt. %, both mixtures were used to produce sintered samples at temperatures from 700 to 900 °C. Experiments showed the best results for sample number 2, which was sintered at 900 °C for 4 minutes. Resulting porosity was 0.9 % and hardness reached a maximum value of 718 HV 1. However, all sintered samples show cracks at room temperature associated with increased brittleness of the material.
Fluoride conversion coatings on magnesium materials
Staněk, Jan ; Wasserbauer, Jaromír (referee) ; Březina, Matěj (advisor)
This bachelor thesis deals with the topic of corrosion protection of magnesium materials by conversion coatings. The aim is to characterize and compare properties of fluoride conversion coatings formed on wrought magnesium sample and magnesium sample prepared by powder metallurgy. Basic knowledge of pure magnesium, magnesium alloys, powder metallurgy, corrosion, and protection against it are described in the theoretical part. Recent results of corrosion protection by fluoride conversion coatings on magnesium materials are summarised in the recherché part. The experimental part is focused on preparation of fluoride conversion coatings on each type of sample by immersion in Na[BF4] molten salt and by dipping in hydrofluoric acid. Surface morphology and composition of coatings were characterized by EDS analysis and corrosion protection was evaluated by potentiodynamic measurements.
Preparation and properties of porous magnesium material
Ďubašák, Matej ; Kosár, Petr (referee) ; Březina, Matěj (advisor)
Magnesium is a lightweight metal suitable for various technical and biomedical applications due to its great strength-weight ratio and biocompatibility. The powder metallurgy (PM) of magnesium presents a modern method of porous magnesium processing, in which are reached specific mechanical properties influenced by high purity, material structure and controlled porosity during this process. This thesis deals with preparation and characterization of porous magnesium material which is prepared from a magnesium powder containing a particles with average size of 50 µm. The preparation process consists of powder pressing and sintering of green compacts. The properties of porous magnesium prepared by PM method depend on conditions of every individual process. The compaction pressure and sintering temperature were altered to optimize a preparation proces. There were examined mechanical properties (3 point bending, hardness) and optical properties (fractography and metallography). Obtained properties of porous magnesium prepared by PM were compared with technical literature.
Ternary shape memory alloys fabrication by compactation of mechanically alloyed powder feedstocks
Seidl, Samuel ; Australie, Dr Ang Siao Ming, Swinburne University of Technology, (referee) ; Čížek, Jan (advisor)
Predmetom tejto práce je funkcia a použitie zliatiny s tvarovou pamäťou na báze Cu Al Ni. Ďalej sú skúmané rôzne prístupy vo výrobe týchto zliatín, konkrétne prášková metalurgia a kompaktačné procesy ako spekanie výbojom plazmy a tepelné spracovanie pripravených surových výliskov. Tieto metódy boli taktiež skúmané formou experimentu a výsledky vyhodnotené.
Microstructure study of SPS compacted metallic binary materials
Mikuš, Tomáš ; Moravčík, Igor (referee) ; Jan, Vít (advisor)
Bachelor’s thesis deals iron aluminides and solid solutions Fe-Cu. In literature analysis are intermetallic materials and their use. Fe-Cu solutions, powder metallurgy, SPS technique and diffusion. In experimental part was used specimens made by SPS to structure and thermic analysis.
The preparation and evaluation of intermetallic exothermic metallic blends
Mynarčík, Pavel ; Moravčík, Igor (referee) ; Jan, Vít (advisor)
During exothermic reactions a significant amount of heat is released. This heat can be further utilized for heating up chemical substances, chemical reaction initiation or welding. The first part of this thesis contains survey of thermodynamics and thermodynamics and thermochemistry of exothermic reactions, overview of commonly used exothermic processes as thermites and NanoFoil, summary of intermetallic systems and possibilites of powder metallurgy as a fabrication process of exothermic powder blends. Based on the survey part is designed experimental powder blend obtained by powder metallurgy. 18 powder samples were analysed; chemical composition was obtained by XRD and EDS analysis, on scaning electron microscope the morphology of powder particles was evaluated and by differential scanning calorimetry (DSC) the temperature of exothermic intermetallic reaction was determined. Furthermore a bulk intermetallic sample was sintered by spark plasma sintering process (SPS).
Processing of Mg-based powder materials by SPS method
Moleková, Kristína ; Pacal, Bohumil (referee) ; Doležal, Pavel (advisor)
Diploma thesis occupy with preparation of porous material from magnesium powder with a HAp admixture by cold pressing followed by spark plasma sintering (SPS). This thesis contain both preparation of bulk material, diffusion plot and charakterization of materials based on the compaction process conditions. On the basis of physical mechanical characteristics, the impact of the pressing process on the subsequent sintering and the resulting material properties are evaluated. Bulk material is characterized considering to structure and physical–mechanical properties. Properties of final metarial will serve to optimize conditions for process of bulk material preparation.
Fluoride conversion coatings on composite Mg/MgO materials
Peroutka, Jakub ; Buchtík, Martin (referee) ; Hasoňová, Michaela (advisor)
Bachelor thesis deals with preparation of composite materials based on Mg/MgO and their subsequent coating with fluoride conversion coating. Materials based on Mg/MgO were prepared by powder metallurgy. The theoretical part contains of basic magnesium information, advantages and disadvantages of Mg and brief Mg preparation. In the next part there are summarized basic principles, advantages and disadvantages in powder metallurgy. The second theoretical part deals with basic properties of MgO, literary research which deals with description of MgO on chemical structure of different varieties of Mg alloys or composition materials based on Mg/MgO. The last part of theoretical part describes conversion coatings, brief description of chemical reaction kinetics and diffusion of fluoride conversion coating. The experimental part deals with preparation of composite materials based on Mg/MgO by powder metallurgy. The main goal of experimental part was description of possible effect of MgO content on the formation of fluoride conversion coating.
Multi-element Systems of Biomaterials Based on Magnesium and Zinc
Hasoňová, Michaela ; Nový, František (referee) ; Vojtěch, Dalibor (referee) ; Doležal, Pavel (advisor)
Dissertation thesis deals with basic research in the field of materials from pure Zn powders and Mg, Zn, and Ca binary mixtures prepared by powder metallurgy. General powder metallurgy principles and methods, a brief description of Mg, Zn, and Ca structure and properties, and the latest research in the field of bulk materials preparation from these elements via powder metallurgy are summarized in the theoretical part of the thesis. The experimental part focuses on the preparation of materials from finer and coarser Zn powder particles by hot pressing at 300 and 400 °C using the pressure of 100, 200, 300, 400, and 500 MPa. Binary mixtures based on Mg with the addition of Zn or Ca were prepared by hot pressing in the solid-state (300 °C) and hot pressing in the semi-solid state (400 °C, 450 °C in the case of Mg-Ca system) using the pressure of 500 MPa. Binary mixtures based on Zn with the addition of Mg or Ca were prepared by hot pressing in the semi-solid state (400 °C) using the pressure of 500 MPa. The prepared materials were evaluated in terms of microstructure, elemental and phase composition, microhardness, flexural strength, and fractography. The results showed that in the case of processed from pure Zn powders, a better combination of the flexural strength and displacement was achieved in the case of the finer Zn powder, namely in the material prepared at a temperature of 400 °C and a pressure of 500 MPa. In the case of mixtures, the best connection between the powder particles was achieved in the case of a material based on finer Zn powder with 0.5 wt.% of Mg, which had a significant effect on the achieved values of flexural strength and displacement. The amount of minor powder in the mixture had a significant effect on the prepared material structure and phase composition, while the processing conditions influenced the reached strength characteristics and fracture mechanism.

National Repository of Grey Literature : 70 records found   beginprevious21 - 30nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.