National Repository of Grey Literature 29 records found  beginprevious21 - 29  jump to record: Search took 0.01 seconds. 
Ionic polyacetylene type polymers and polymer networks by catalyst-free quaternization polymerization
Faukner, Tomáš ; Zedník, Jiří (advisor) ; Balcar, Hynek (referee) ; Sedlařík, Vladimír (referee)
(Doctoral Thesis, 2016, Mgr. Tomáš Faukner, IONIC POLYACETYLENE TYPE POLYMERS AND POLYMER NETWORKS BY CATALYST FREE QUATERNIZATION POLYMERIZATION) The composition and structure of a series of ionic π-conjugated poly(monosubstituted acetylene)s prepared via catalyst-free quaternization polymerization (QP) of 2-ethynylpyridine (2EP) activated with equimolar amount of alkyl halide [RX = ethyl bromide, ethyl iodide, nonyl bromide and haxadecyl (cetyl) bromide] as a quaternizing agent (QA) have been studied in detail. The performed QPs gave ionic polymers well soluble in polar solvents, with approximately half of pyridine rings quaternized, which implies that also non-quaternized monomers were involved in the process of QP. The configurational structure of polyacetylene main chains was suggested based on 1 H NMR, IR as well as Raman (SERS) spectral methods. The QPs in bulk gave more expected irregular cis/trans polymers while the QPs in acetonitrile solution gave high-cis polymers. A series of prepared symmetrical bi-pyridylacetylene based monomers has been polymerized via QP approach resulting into a series of new ionic π-conjugated poly(disubstituted acetylene) type materials. It is therefore obvious that the mechanism of quaternization activation frequently applied on monosubstituted...
Conjugated porous polymers derived from diethynylarenes by chain-growth polymerization and polycyclotrimerization
Slováková, Eva ; Sedláček, Jan (advisor) ; Merna, Jan (referee) ; Červený, Libor (referee)
4 ABSTRACT The synthesis has been described yielding a new type of rigid conjugated polymer networks which possess a high content of permanent micropores and macropores and exhibit high surface areas up to 1469 m2/g. The networks have been prepared via chain-growth coordination polymerization catalysed with insertion catalysts based on Rh complexes. This polymerization has been newly applied to bifunctional acetylenic monomers of diethynylarene type (1,4-diethynylbenzene, 1,3-diethynylbenzene and 4,4'-diethynylbiphenyl). The covalent structure of the networks consists of the polyacetylene main chains densely connected by arylene struts. The W and Mo metathesis catalysts have been revealed as inefficient for the synthesis of these networks. The increase in the polymerization temperature and time has been shown to affect positively the content and the diameter (up to 22 nm) of the mesopores in the networks. A mechanism has been proposed that explains the mesopores formation as a result of mutual knitting of small particles of the microporous polymer. The application of emulsion polymerization technique allowed to prepare texturally hierarchical polyacetylene networks possessing interconnected open macropores (diameter up to 4,8 μm) the walls of which exhibited micro/mesoporous texture. It was demonstrated...
Conjugated porous polymers derived from diethynylarenes by chain-growth polymerization and polycyclotrimerization
Slováková, Eva
The synthesis has been described yielding a new type of rigid conjugated polymer networks which possess a high content of permanent micropores and macropores and exhibit high surface areas up to 1469 m2/g. The networks have been prepared via chain-growth coordination polymerization catalysed with insertion catalysts based on Rh complexes. This polymerization has been newly applied to bifunctional acetylenic monomers of diethynylarene type (1,4-diethynylbenzene, 1,3-diethynylbenzene and 4,4'-diethynylbiphenyl). The covalent structure of the networks consists of the polyacetylene main chains densely connected by arylene struts. The W and Mo metathesis catalysts have been revealed as inefficient for the synthesis of these networks. The increase in the polymerization temperature and time has been shown to affect positively the content and the diameter (up to 22 nm) of the mesopores in the networks. A mechanism has been proposed that explains the mesopores formation as a result of mutual knitting of small particles of the microporous polymer. The application of emulsion polymerization technique allowed to prepare texturally hierarchical polyacetylene networks possessing interconnected open macropores (diameter up to 4,8 μm) the walls of which exhibited micro/mesoporous texture. It was demonstrated that...
Functionalized microporous polymer networks prepared from ethynylarenes
Stahlová, Sabina
The preparation of a new group of functionalized conjugated polymer networks has been described based on spontaneous quaternization polymerization of ethynylpyridines with bis(bromomethyl)arenes. The networks consisted of polyacetylene chains with pyridyl and pyridiniumyl pendants cross-linked with -CH2(arylene)CH2- links. The variation of the ratio of monomer and quaternization agent in the feed modified the ratio of pyridyl and pyridiniumyl groups in the networks (pyridyl/pyridiniumyl ratios from 0 to 1.32). The networks did not exhibit a permanent microporosity that could be confirmed by nitrogen adsorption at 77 K. Nevertheless, all networks were active in capture of CO2 at 293 K (up to 0.73 mmol CO2/g, 750 Torr). It has been hypothesized that CO2 capture reflected formation of a temporary porous texture of the networks through conformational changes of the network segments enabled by the segments mobility at room temperature. The preparation of functionalized conjugated polymer networks with permanent micro/mesoporosity (SBET up to 667 m2 /g) has been described that was based on chain coordination copolymerization of acetylenic monomers. The copolymerization of 1,4-diethynylbenzene or 4,4'-diethynylbiphenyl with mono or diethynylbenzenes bearing NO2 or CH2OH groups has been demonstrated as...
Characterization of poly(1,4-diethynylbenzene) by IGC method
Petrášová, Sabina ; Sedláček, Jan (advisor) ; Pacáková, Věra (referee)
Poly(1,4-diethynylbenzene) ( -conjugated polymer) was prepared as an insoluble polymer network via chain coordination polymerization of 1,4-diethynylbezene catalyzed with [Rh(NBD)acac] complex. Thermodynamic properties and acid-base characteristics of the prepared poly(1,4-diethynylbenzene) were studied by means of Inverse Gas Chromatography (IGC) in the temperature range 80-100 řC. Retention data of selected testing substances were used to determine the Gibbs energy of sorption, the sorption enthalpy and their acid-base and disperse parts as well as the disperse contribution to the surface energy and parameters of KA, KD, ANHPS and DNHPS quantifying the acid-base character of the studied polymer. The results showed that poly(1,4-diethynylbenzene) interacted more efficiently with Lewis bases than with Lewis acids. The values of experimental sorption enthalpy were used for the determination of the parameters KA and KD. Values of these parameters classify poly(1,4-diethynylbenzene) as the material with a slightly acid character. This conclusion is further supported by the results of H. P. Schreiber method based on the application of ANHPS and DNHPS parameters for the evaluation of the acid-base properties of the material. The infrared spectroscopy proved that poly(1,4-diethynylbenzene) contained...
Thermal Stability/Degradation of High Viscosity Dental Resins
Bystřický, Zdeněk ; Trautmann, Radoslav (referee) ; Poláček, Petr (advisor)
This diploma thesis deals with the influence of long term thermal load on the stability of high-viscous resins used for dental composites matrix. The process of polymerization was also investigated in connection with type and ratio of monomer units, mass content of the initiator system and the presence of nanosilica filler. Prepared resins were characterized by differential compensation photocalorimetry (DPC) and dynamic mechanical analysis (DMA). The dependence of the heat flow on time was measured by DPC. Based on the experimental data, the dependence of conversion on time and the dependence of polymerization rate on conversion were determined. Viscoelastic properties of the cured resins were determined by DMA. Experimentally measured data implies that by the influence of elevated temperature both the degree of conversion and the polymerization rate decreased. With a higher content of the initiator system incorporated in resin the decrease was more significant. Therefore, we can conclude that when the resin was exposed to the elevated temperature one of the components of the initiator system was inactivated. For the photopolymerized resins presence of two glass transition temperatures is typical due to the inhomogenous morphology of the cured resin. There are two types of domains with varying relative composition. However, after the degradation only one glass transition temperature was detected. That was caused by reducing the resin viscosity due to the increased temperature. Higher mobility of the initiator system molecules and monomers itself resulted in more homogenous structure of the cured resin. In case of elevated temperature exposed resins more significant decrease of the elastic modulus was observed. The curing process is considerably influenced by the type and ratio of the monomer units and by the presence of filler.
Research Report T-788
Dušková, Miroslava ; Dušek, Karel ; Vlasák, P.
The project was focused on the formation of coating films from new precursors.

National Repository of Grey Literature : 29 records found   beginprevious21 - 29  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.