National Repository of Grey Literature 26 records found  beginprevious21 - 26  jump to record: Search took 0.00 seconds. 
The role of proto-oncogene crk in invasiveness
Tomášová, Lea ; Rösel, Daniel (advisor) ; Ševčík, Jan (referee)
Proto-oncogene Crk was identified as an oncogenic product of an avian retrovirus in 1988. It is an adaptor protein containing SH2 and SH3 binding domains. Thanks to these domains Crk facilitates protein-protein interactions and therefore plays a crucial role in signal transduction. Crk forms signal complexes with several proteins and hence impacts many cellular processes, among them cell migration, tumorigenezis and invasion of the surrounding tissues. The increased invasiveness allows the tumour cells to detach from the primary tumour and form metastasis which is very problematic feature of cancer. Overexpression of Crk was observed in several tumour tissues, it correlates with an aggressive and metastatic phenotype of the tumours. The subject of this thesis is to describe the mechanisms of how Crk can regulate cellular motility and invasiveness.
The role of NG2 glycoprotein in the regulation of Rho/ROCK signaling.
Kratochvílová, Magdalena ; Rösel, Daniel (advisor) ; Libusová, Lenka (referee)
NG2 is a transmembrane glycoprotein mainly expressed in developing tissue, and often re-expressed in tumor cells. NG2 glycoprotein is an important regulator of cell migration and adhesion. Increased expression of NG2 enhances the metastatic potential of cancer cells. However, the molecular mechanisms of these processes are still not fully understood. An increasing number of evidences, in recent years, have shown that NG2 can be responsible for Rho/ROCK activation, which is essential for effective amoeboid invasiveness. In this thesis, we analysed the role of NG2 glycoprotein, especially the role of its PDZ- binding motif on amoeboid phenotype induction, and activation of Rho/ROCK signaling. Our results demonstrate the importance of the NG2 PDZ-binding motif on mesenchymal- amoeboid transition of cells in a 3D environment. Surprisingly, they show that the expression of both the NG2 cytoplasmatic domain and the truncated version, lacking the PDZ-binding motif, do not change the amount of Rho-GTP or the activation of the Rho/ROCK signaling pathway in 2D.
The use of CAM assay for characterization and study of cancer cell invasive properties
Vágnerová, Lenka ; Dvořák, Michal (advisor) ; Geryk, Josef (referee)
The chorioallantoic membrane (CAM) of chicken embryos belongs to the in vivo model systems frequently used for the study of angiogenesis and cell invasiveness. Using CAM assay we have tested selected chicken sarcoma cell lines characterized by different angiogenic properties and different ability to form metastasis. In addition to CAM assay, several other methods have been used to characterize the phenotype of these cell lines. We have selected a few proteins which could significantly influence the angiogenic and metastatic properties of investigated cell lines. We have established cell lines stably overexpressing these genes and compared their phenotypes with parental cell lines. We have shown that genes encoding ISL1, ARNT2, PROM1, HOXA11 proteins participate, in our experimental model, in activation of programes controlling angiogenesis and cell invasion.
Effect of polyploidization on species invasive success
Líblová, Zuzana ; Münzbergová, Zuzana (advisor) ; Rooks, Frederick (referee)
Polyploid variants of many species of plants are strikingly frequently found among alien plants on all continents. They also very often have a much larger distribution range of its occurrence, compared to diploid plants in the place of their origin. In many cases, the polyploid cytotype also has increased tolerance to various stress factors or a physiological and morphological characteristics that allow them to survive the conditions in which the diploid plants would have little chance to survive. All this suggests that polyploidy is likely to bring plants an evolutionary advantage over their diploid ancestors, and polyploids therefore can successfully colonize new territories. This thesis summarizes the findings about the possible consequences of polyploidy at different levels in relation to their effects on the properties supporting plant invasive ability. It presents also known hypotheses dealing with possibilities of why plants become invasive after introduction. This is followed by sections devoted to flow cytometry, an important modern method for determining genome size and ploidy level. In conclusion it briefly describes the model species bird vetch (Vicia cracca) and the results of measurements of the degree of ploidy of seeds of this plant from Alaska and Japan.
The role of NG2 glycoprotein in regulation of Rho/ROCK signaling
Kratochvílová, Magdalena ; Rösel, Daniel (advisor) ; Kuželová, Kateřina (referee)
NG2 is a transmembrane glycoprotein, which takes part in cellular processes such as adhesion, migration or invasivity, i.e., in processes important in tissue development but also in tumor and metastasis formation. Among other things, NG2 leads to an inhibition of neurite growth, and probably plays an important role in amoeboid type of cell invasion. These processes are in many respects similar. Both in inhibition of neurite growth and in mesenchymal-amoeboid transition occur morphological changes which lead to a loss of cell protrusions and a transition to a rounded shape. In both of these processes Rho/ROCK signaling also plays a crucial role. Connection between NG2 and the Rho/ROCK signaling pathway has been indicated in the process of inhibition of neurite growth. The mechanism of Rho/ROCK signaling regulation by NG2 glycoprotein is, however, still unknown. In this thesis is proposed a molecular mechanism of Rho/ROCK pathway activation by glycoprotein NG2 which relies on the NG2/MUPP1/Syx signaling complex where the scaffold protein MUPP1, bound to activated NG2, enables binding and activation of the Syx protein. Syx then as RhoGEF activates Rho/ROCK signaling, and the activated Rho/ROCK pathway leads to inhibition of neurite growth, increased cell contractility and traction forces. These processes are...
The biological importance of CAS SH3 domain tyrosine phosphorylation
Janoštiak, Radoslav ; Brábek, Jan (advisor) ; Dvořák, Michal (referee)
Protein CAS is a major tyrosine-phosphorylated protein in cells transformed by v-crk and v-src oncogenes. It is a multidomain adaptor protein, which serves as a scaffold for assembly of signalling complexes which are important for migration and invasiveness of Src-transformed cells. A novel phosphorylation site in N-terminal SH3 domain was identified - tyrosine 12 located on binding surface of CAS SH3 domain. To study biological importance of tyrosine 12 phosphorylation, non-phosphorylable (Y12F) and phosphomimicking ( Y12E) mutant of CAS were prepared. We found that phosphomimicking mutation Y12E leads to decreased interaction of CAS SH domain with kinase FAK a phosphatase PTP-PEST and also reduce tyrosine phosphorylation of FAK. Using GFP-tagged CAS protein, we show that Y12E mutation caused delocalization of CAS from focal adhesion but has no effect on localization of CAS to podosome-type adhesion. Non-phosphorylable mutation Y12F cause hyperphosphorylation of CAS substrate domain and decrease turnover of focal adhesion and associated cell migration of mouse embryonal fibroblasts (MEFs) independent to integrin singalling. Analogically to migration, CAS Y12F decrease invasiveness of Src-transformed MEF. The results of this diploma thesis show that phosphorylation of Tyr12 in CAS SH3 domain is...

National Repository of Grey Literature : 26 records found   beginprevious21 - 26  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.