National Repository of Grey Literature 31 records found  beginprevious21 - 30next  jump to record: Search took 0.00 seconds. 
The role of ageing in the changes of the brain extracellular matrix and extracellular space properties
Kamenická, Monika ; Vargová, Lýdia (advisor) ; Růžička, Jiří (referee)
The process of aging causes the major changes in nervous tissue such as changes in the size of brain, architecture of glial cells and extracellular matrix. The size of brain is on the decrease as consequence of aging and there is a change of molecules as well as morphology at all levels. Extracellular space (ECS) is interstitium important especially in communication between cells mediated by diffusion. The limit of diffusion in extracellular space is given by size of ECS, which is discribed by volume fraction and tortuosity, that reflect amount of diffusion barriers. The changes of ECS diffusion parameters during aging were measured by real-time iontophoretic method in four parts of brain (cortex - Cx, hippocampus - Hp, inferior colliculus - IC and corpus trapezoideum - TB). Further, we studied influence of deficiency of Bral2 link protein at differences of ECS diffusion parameters and importance of Bral2 protein at aging and regulation mechanisms of cytotoxic brain edema. Our results show, that aging leads to decreasing of ECS volume v Cx and Hp, but it was not observed in IC and TB, where the intact perineuronal nets act like protecting shield against the degenerative disease induced by aging. However, small differences in composition of perineuronal nets, deficiency of Bral2 link protein, may...
The role of link proteins in the stabilization of the brain extracellular matrix and in formation and maintaining of the perineuronal nets
Suchá, Petra ; Vargová, Lýdia (advisor) ; Jendelová, Pavla (referee)
The brain extracellular space (ECS) contains specified macromolecules forming the extracellular matrix (ECM), containing a high amount of negative charges that could bind water or other soluble ions and molecules diffusing within the ECS. In specific brain areas, the ECM molecules form a condensed, reticular-like structure of perineuronal nets (PNNs). It has been found that PNNs appear at the end of the critical period, when they stabilize the synapses and terminate their plasticity and may have also neuroprotective function. To study the role of brain link protein 2 (Bral2) in stabilizing the ECM complexes, we employed the real-time iontophoretic method and immunohistochemical analysis to show the difference in the ECS diffusion parameters and level of expression of the ECM molecules between the wild type and Bral2-deficient mice. We also compared changes in the ECS diffusion parameters induced by Bral2 deficiency with those appeared after enzymatic destruction of the ECM by the chondroitinase ABC (chABC). In the Bral2-deficient mice, we discovered significantly decreased values of tortuosity in the trapezoid body. This difference was age related and did not manifest itself in young mice. Immunohistochemical analysis showed that inferior colliculus does not contain Bral2-brevican based...
Invasive structures of cancer cells in 3D environment
Lyková, Dominika ; Tolde, Ondřej (advisor) ; Libusová, Lenka (referee)
The ability of cells to migrate through tissue barriers plays an important role in physiological and pathological processes including immune response or invasiveness of cancer cells. The cells generate cytoplasmic protrusions called podosomes and invadopodia, collectively known as invadosomes or podosome-type adhesions (PTA), which are thought to be the key structures of cell invasion, especially of cancer cells during metastasis. Invadosomes are F-actin rich cell-matrix contacts with capability to degrade extracellular matrix components and are observed both in normal cells (such as monocytic cells, endothelial cells and smooth muscle cells) and in cancer cells. This bachelor thesis is focused on those in cancer cells, their initiation, regulation, function and morphology in 3D and in vivo and their requirement for tumor metastasis.
Extracellular matrix in yeast populations
Novotná, Pavla ; Kuthan, Martin (advisor) ; Dvořáček, Lukáš (referee)
The microorganisms in a natural environment are frequently found in multicellular forms, most commonly in biofilms. Biofilm is characterized as a community of cells living at the interface of two environments, embedded in the extracellular matrix. ECM is a significant component of biofilms in yeast populations. Extracellular matrix acts as a protective barrier and allows cells to survive under adverse conditions and better compete with other microorganisms. It also forms an effective barrier against antibiotics and other harmful substances, what makes biofilms a serious problem in medicine and industry. Formation of the matrix may be influenced by the morphological forms of colonies. Increased formation of ECM is commonly connected in phenotypic switching in response to changes of their living conditions. The compositeion of the ECM is a genus-and species-specific. The main component of the matrix consists of polysaccharides and proteins.

National Repository of Grey Literature : 31 records found   beginprevious21 - 30next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.