National Repository of Grey Literature 14 records found  previous11 - 14  jump to record: Search took 0.01 seconds. 
Analysis of local structures in DNA molecules
Nyczová, Adéla ; Smetana, Jan (referee) ; Brázda, Václav (advisor)
Local DNA structures are alternative DNA conformations which can be formed aside from typical B-DNA conformation. These structures often play pivotal roles in regulation of basic biological processes, such as DNA replication, transcription or binding of specific ligands. This biological significance makes alternative DNA secondary structures a potential drug target. In this diploma thesis, local structures in genomes of viruses from Flaviviridae and Retroviridae families are analysed using bioinformatics tools. Furthermore, these structures are visualised using atomic force microscopy.
Genome analysis techniques and their applications in elucidation of molecular underpinnings of rare genetic diseases.
Přistoupilová, Anna ; Kmoch, Stanislav (advisor) ; Sedláček, Zdeněk (referee) ; Pačes, Jan (referee)
Rare diseases represent a heterogeneous group of more than ~7000 different diseases, affecting 3,5-5,9% of the global population. Most rare diseases are genetic, but causal genes are known only in some of them. Many patients with rare diseases remain without a diagnosis, which is crucial for genetic counseling, prevention, and treatment. With the development of new methods of genome analysis, decreasing cost of sequencing, and increasing knowledge of the human genome, a new concept for identifying disease-causing genes was established. It is based on comparing the patient's genetic variability with the genetic variability of the general population. This dissertation describes next-generation sequencing technologies (NGS), bioinformatic analysis of acquired data and their applications in the elucidation of molecular underpinnings of rare genetic diseases. These procedures have led to the identification and characterization of causal genes and gene mutations in autosomal dominant tubulointerstitial kidney disease (SEC61A1, MUC1), autosomal dominant neuronal ceroid lipofuscinosis (CLN6, DNAJC5), neurodegenerative disease of unknown etiology (VPS15), Acadian variant of Fanconi syndrome (NDUFAF6) and spinal muscular atrophy (SMN1). The application of novel genome analysis techniques increased the...
Analysis of quantitative and qualitative genetic features in the pathogenesis of hereditary solid tumors.
Zemánková, Petra ; Kleibl, Zdeněk (advisor) ; Živný, Jan (referee) ; Tichý, Boris (referee)
Cancer the second most common causes of death in the Czech Republic. Carriers of mutations in genes predisposing to hereditary cancers represent a small but clinically significant group of high risk individuals. Today, dozens of predisposing genes for hereditary tumor syndromes are known and targeted next generation sequencing (NGS) has become a standard approach for their analysis. NGS allows rapid acceleration diagnostics of causal mutation in high-risk individuals. To identify mutations in genes predisposing to hereditary cancers, we designed a panel NGS analysis including subsequent bioinformatics analysis allowing a reliable identification of single nucleotide variants, insertions/deletions, and large intragenic rearrangements. The bioinformatics procedures described in this thesis were used for panel NGS validation, but also for identification of alterations associating with so far undescribed hereditary tumor types. Bioinformatics analyzes have become the basis for the unified processing of large datasets from the CZECANCA consortium and enable the construction of a population-specific database of genotypes that serve to improve clinical diagnostics of cancer predisposition in Czech patients. The versatility of NGS also allows its use for RNA (cDNA-based) analyzes of splicing variants in the...
Isolation and detection of DNA from plant species important for food prodution
Orel, Matúš ; Rittich, Bohuslav (referee) ; Kovařík, Aleš (advisor)
In the food industry, it is very important to take care of the quality, safety and organoleptic properties of the products supplied. For this reason, food must be checked. However, not all information can be found using conventional techniques such as immunoassays, chromatographic techniques, etc. DNA-based techniques can be used for these cases where traditional procedures are insufficient. Among them, the best known technique is PCR. The aim of the thesis was to isolate DNA from vegetable samples (broccoli, beetroot, carrot and pepper). DNA was isolated using the magnetic particle method and the traditional CTAB method. Both methods were able to isolate the DNA from the vegetable samples in quality and at a concentration suitable for PCR, where the 35S rDNA gene region was amplified (more precisely about 700 bp of the 18S-ITS1-5,8S region). After amplification, the PCR products were subjected to restriction reactions and the results compared to bioinformatic analysis. These steps have succeeded in finding suitable enzymes for diferentiation of PCR products from the tested vegetable species.

National Repository of Grey Literature : 14 records found   previous11 - 14  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.