Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.00 vteřin. 
New technique on a chip for rapid detection of biological materials
Pejović Simeunović, Jelena ; Foret,, František (oponent) ; Táborský,, Petr (oponent) ; Hubálek, Jaromír (vedoucí práce)
This work proposes a technique for on-chip separation and detection of quantum dots (QDs) conjugated with various proteins in order to study the inuence of the coupling agent on a quenching of QD uorescence intensity caused by conjugation to a protein and to perform multi-analyte immunoassay to identify small amounts of the protein. Under optimal conditions, bioconjugated QDs were successfully separated from free QDs within 10 minutes. Particles and target solutions were mixed, and on-chip detection was performed using a device developed in our laboratory. Only one excitation light source was used in combination with several filters for different emission wavelengths. Fluorescence emitted by the two types of conjugated QDs could then be recorded simultaneously since the QDs emitted light at different wavelengths while being excited at the same wavelength. By mixing two types of QDs bioconjugated with two kinds of proteins and antibodies we were able to detect immunocomplex peaks with varying areas. The peak area depended on concentration of QDs and antigens, on the progress of antibody-antigen reaction and proved to be linearly correlated with the antigen concentration. We showed that on-chip capillary electrophoresis of QDs can be used as a sensitive technique for detection of biological molecules. The main benefits of this method are simplicity, small sample and reagent volume requirements, and high efciency of separation.
New technique on a chip for rapid detection of biological materials
Pejović Simeunović, Jelena ; Foret,, František (oponent) ; Táborský,, Petr (oponent) ; Hubálek, Jaromír (vedoucí práce)
This work proposes a technique for on-chip separation and detection of quantum dots (QDs) conjugated with various proteins in order to study the inuence of the coupling agent on a quenching of QD uorescence intensity caused by conjugation to a protein and to perform multi-analyte immunoassay to identify small amounts of the protein. Under optimal conditions, bioconjugated QDs were successfully separated from free QDs within 10 minutes. Particles and target solutions were mixed, and on-chip detection was performed using a device developed in our laboratory. Only one excitation light source was used in combination with several filters for different emission wavelengths. Fluorescence emitted by the two types of conjugated QDs could then be recorded simultaneously since the QDs emitted light at different wavelengths while being excited at the same wavelength. By mixing two types of QDs bioconjugated with two kinds of proteins and antibodies we were able to detect immunocomplex peaks with varying areas. The peak area depended on concentration of QDs and antigens, on the progress of antibody-antigen reaction and proved to be linearly correlated with the antigen concentration. We showed that on-chip capillary electrophoresis of QDs can be used as a sensitive technique for detection of biological molecules. The main benefits of this method are simplicity, small sample and reagent volume requirements, and high efciency of separation.
Separation and Detection of Bioconjugated Quantum Dots Using on a Chip Electrophoresis
Pejović, Jelena
Semiconductor nanocrystals, quantum dots (QDs), are nanoscale particles that have been attract a lot of attention due to their unique optic and electronic properties. Due to very diverse and numerous applications, it is really important to make a tool for precise and controlled detection of QDs. In this study, we investigate on a chip detection and separation of QDs bioconjugated with BSA (bovine serum albumin) using homemade equipment based on principle of capillary electrophoresis (CE) and optical detection. Quenching effect of different concentration of BSA on fluorescence intensity of QDs was monitored. It was found that with increasing concentration of BSA fluorescence intensity of QDs is decreasing. This research can lead to a better understanding of interaction between different size QDs and biomolecules.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.