Národní úložiště šedé literatury Nalezeno 1 záznamů.  Hledání trvalo 0.00 vteřin. 
Electrochemical study of novel materials for energy conversion application
Novčić, Katarina ; Rees, Neil (oponent) ; Kim, Daewoo (oponent) ; Pumera, Martin (vedoucí práce)
A promising alternative to resolve the current energy and environmental crisis lies in the utilization of electrochemical water splitting via hydrogen evolution reaction (HER). Therefore, there is urgency for investigation and development of new electrocatalysts for the energy conversion application. Different novel materials have been promising electrocatalysts for the HER. Among them, two-dimensional (2D) materials such as transition metal dichalcogenides (TMDs), MAX phases and MXenes have drawn much attention due to their distinctive electrochemical properties. Even though 3D-printing opened the way for the fast prototyping and manufacturing of electrode devices, their merging with different 2D materials still remains challenging. This Thesis deals with the electrochemical study of different novel materials for energy conversion applications and clean hydrogen production. It represents a study on the macroscopic and microscopic electrochemical performance of modified 3D-printed nanocarbon electrodes and TMDs, MAX phase, and MXene electrocatalysts. The macroscopic electrochemical activity is examined by traditional techniques such as voltammetry, providing information about the average electrochemical performance of the materials. Additionally, their microscopic electrochemical activity is performed by scanning electrochemical microscopy (SECM), which gives an insight into the local differences in the materials' electrochemical activity and provides information about the distribution and uniformity of the HER active sites on the material surfaces. This Thesis has broad implications for the general understanding of the electrocatalytic performance of novel 2D materials, which is important for their future development as electrocatalysts.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.