Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Nezávislý nízkonapěťový trakční asynchronní pohon
Matucha, Tomáš ; Skalický, Jiří (vedoucí práce)
Práce se zabývá vytvořením zpřesněného matematického modelu trakčního pohonu s asynchronním motorem malého jmenovitého napětí (28 V), který je napájen z akumulátorů. Model vytvořený v programu MATLAB – Simulink je složen z modelů motoru, střídače a zátěže, které jsou vzájemně propojeny a doplněny o vektorové řízení. Výsledný model umožňuje do simulací zahrnout celou řadu jevů, jež se běžně zanedbávají, ale podstatně ovlivňují chování pohonu zejména při použití motoru malého jmenovitého napětí. Jedná se o vliv sycení magnetického obvodu motoru, vliv teploty a povrchového jevu na odpory vinutí, dále vlivy nelinearit střídače jako jsou úbytky napětí na spínacích prvcích, ochranné doby a zapínací a vypínací doby tranzistorů střídače. Velká pozornost byla věnována určování ztrát v jednotlivých částech pohonu. V rámci práce bylo vytvořeno laboratorní pracoviště, na němž byla ověřena správnost modelu. Laboratorní pohon je možno řídit pomocí mikroprocesoru nebo pomocí MATLABu ve spojení s aplikací dSPACE. Na laboratorním vzorku byl analyzován vliv kompenzací nelinearit střídače a kolísání napětí stejnosměrného meziobvodu na vyšší harmonické větvového proudu. Bylo řešeno také řízení motoru zajišťující minimální Jouleovy ztráty.
Nezávislý nízkonapěťový trakční asynchronní pohon
Matucha, Tomáš ; Skalický, Jiří (vedoucí práce)
Práce se zabývá vytvořením zpřesněného matematického modelu trakčního pohonu s asynchronním motorem malého jmenovitého napětí (28 V), který je napájen z akumulátorů. Model vytvořený v programu MATLAB – Simulink je složen z modelů motoru, střídače a zátěže, které jsou vzájemně propojeny a doplněny o vektorové řízení. Výsledný model umožňuje do simulací zahrnout celou řadu jevů, jež se běžně zanedbávají, ale podstatně ovlivňují chování pohonu zejména při použití motoru malého jmenovitého napětí. Jedná se o vliv sycení magnetického obvodu motoru, vliv teploty a povrchového jevu na odpory vinutí, dále vlivy nelinearit střídače jako jsou úbytky napětí na spínacích prvcích, ochranné doby a zapínací a vypínací doby tranzistorů střídače. Velká pozornost byla věnována určování ztrát v jednotlivých částech pohonu. V rámci práce bylo vytvořeno laboratorní pracoviště, na němž byla ověřena správnost modelu. Laboratorní pohon je možno řídit pomocí mikroprocesoru nebo pomocí MATLABu ve spojení s aplikací dSPACE. Na laboratorním vzorku byl analyzován vliv kompenzací nelinearit střídače a kolísání napětí stejnosměrného meziobvodu na vyšší harmonické větvového proudu. Bylo řešeno také řízení motoru zajišťující minimální Jouleovy ztráty.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.