Národní úložiště šedé literatury Nalezeno 1 záznamů.  Hledání trvalo 0.00 vteřin. 
Processing of metallic materials by Selective Laser Melting at elevated temperatures
Malý, Martin ; Filho, Sergio de Traglia Amancio (oponent) ; Dr. Michael R. Tucker (oponent) ; Koutný, Daniel (vedoucí práce)
This dissertation thesis deals with the influence of preheating on the components produced using Selective Laser Melting (SLM), also known as Laser Powder Bed Fusion (LPBF) technology. The thesis contains an overview of the current state of knowledge in the field of preheating and the physical nature of preheating. Furthermore, the work contains an overview of the effect of preheating on specific types of materials. These types of materials included in the state of the art are titanium, intermetallic, nickel and aluminium alloys, and copper. From the state of knowledge, promising research areas were identified, where preheating could lead to more efficient production using LPBF technology and to expansion of the area of processable materials. These areas include the investigation of the effect of preheating in combination with other process parameters on the residual stresses of Ti6Al4V alloy, the effect of preheating on nickel alloy Inconel 939 and copper. The premise of the Ti6Al4V and Inconel 939 topics was that preheating would reduce residual stresses, and thus will be possible to reduce the necessary amount of support structures. The results can lead to more cost-effective production using LPBF technology. This hypothesis was rejected. Despite the reduction in residual stresses in Ti6Al4V, they were not fully eliminated and, in addition, a rapid degradation of unused powder was detected, which increases production costs. The preheating of the Inconel 939, against the assumption based on behaviour of other materials, led to higher deformations and thus residual stresses, due to the evolution of precipitates. Another selected area where preheating could lead to an increase in the portfolio of processable materials is the processing of copper. Copper is a difficult to process material using LPBF technology due to its high thermal conductivity and laser reflectivity. The experiments confirmed a very positive effect of preheating on the relative density of the samples. The samples reached relative density values of over 99% when fabricated with preheating at 400 °C. Thus, preheating can significantly improve the process ability of reflective and high conductive materials. All of the results lead to a better understanding of the behaviour of the materials during processing by LPBF technology and may lead to its further expansion to more industries. The results are summarized in three publications that have been published in scientific journals.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.