National Repository of Grey Literature 9 records found  Search took 0.00 seconds. 
Study of volatile hydrocarbon decomposition in non-thermal plasma of gliding arc at atmospheric pressure
Töröková, Lucie ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
Diploma thesis deals with gliding arc discharge in non-equilibrium plasma, its properties and usage for dissociation of volatile organic compounds. Plasma techniques create a perspective alternative to classical methods such as adsorption, biofilters, thermal processes, freezing and condensation. The method used for analysis of dissociation products is described in the theoretical part as well. Method is gas chromatography and it is combined with mass spectroscopy. The experimental part contains the overall description of GlidArc reactor where volatile organic compounds were dissociated. The volatile organic compound is brought into the reactor from the reservoir by carrier gas (nitrogen); synthetic air was used as working gas. The reactor is connected to the device for sampling. This device has several openings for sampling by SPME fibre method, sorption tubes method and a special opening for probe entry from the device Testo 350 M/XL, which enables instant analysis of low-molecular compounds. GC-MS was used for determination of high-molecular products of dissociation. Products sorbed on SPME fibres were analysed directly, compounds sorbed by active carbon were extracted by carbon disulphide. Samples obtained using SPME fibres were analysed. The major products of the dissociaton were found due to this analysis, those major products are in the case of hexane: pentanal, 4 methyl-3-pentanal, 2-butoxy-ethanol, pentane a 2-hexene. Major products detected when dissociating cyclohexane were: l,3-dimethyl-butane, propanal, cyklohexanone, 5-hexenal a 2-pentyn-1-ol. Major products of xylene dissociation were methyl-benzene, benzaldehyde, 4-methyl-benzaldehyde, 1-nitroethyl-benzene a benzenmethanol. After analysis obtained using sorption tubes showed that mainly the dissociated compound was sorbed, but the products of the dissociation were presented in too low concentration for an adequate analysis. For that reason the sorption tubes were used only for quantitative determination of the compounds depending on the power supply. The dependence of the dissociation of the compounds on the power supply was observed using SPME fibres which were used for quantitative determination. The Results obtained by both obtained techniques were almost in accordance. Speaking of low-molecular compounds, dissociation of all compounds gave the same products, i.e. carbon dioxide, hydrogen, nitrogen oxide, nitrogen dioxide and water. The results show that the dissociation of VOC gives - besides many potentially dangerous dissociation products - significant amounts of nitrogen oxides which is harmful to the environment. Hence it is necessary to be concerned with problems studied in the future mainly with respect to limitation of NOx generation. It will be possible to optimalize the conditions of the VOC dissociation on the basis of future kinetic analysis.
Study of processes during the organosilicone thin films deposition
Flamíková, Kristýna ; Rašková, Zuzana (referee) ; Krčma, František (advisor)
The aim of this work is plasma diagnostic during the deposition of thin films based on organosilicone compounds. Tetravinylsilane (TVS) was used in this study; the optical emission spectroscopy was applied for the diagnostics. The theoretical part of this work gives a basic fundaments of optical emission spectroscopy and brings the procedures for rotational, vibrational, and electron temperature calculations. The deposition process was carried out in pulsed regime with duty cycle 1:4 to 1:499. The pure TVS and TVS containing 10, 40 and 80 % with total gas mixture flow rate of 0.5 sccm were used during the deposition. The hydrogen atomic lines and many rotational lines of molecular hydrogen were identified in the spectra. Besides them, the molecular band of SiH, CH and C2 were observed. The atomic oxygen lines and continuum with a maximum at 550 nm were recorded in the case when oxygen was added. The rotational temperature calculated from 0-0 CH band was in the range 1700 - 2100 K depending on the discharge conditions. The electron temperature of about 1800 K was calculated from hydrogen atomic lines. The experimental results showed the partial plasma composition and some plasma basic characteristics were obtained.
Study of volatile hydrocarbon decomposition in non-thermal plasma of surface discharge at atmoapheric pressure
Věrná, Jana ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
The main goal of this thesis was to study plasma generated by surface discharge and its application in volatile organic compound destruction. Introduction of this thesis deals with the issue of volatile organic compound. The term of volatile organic compound was defined and explained. Summary of the most important sources of volatile organic compound emissions and possible technics for their elimination was presented. This thesis drew attention on negative aspects of volatile organic compounds on human organism and on the whole environment. The problems of surface discharge and its possible application in various branches are known only few years therefore construction of plasma reactor itself was the first independent step of this work. The plasma reactor was consisted of electrode, which was created from the series of metal stripes each other separated by dielectric barrier. On the surface of the electrode, discharge was regulated and distributed. For the reason of technical limits experiment time was limited up to one minute. The experimental part describes reactor for surface discharge and other parts of apparatus in which degradation volatile organic compound was carried out. Nitrogen was used as carrier gas and it was mixed with air before entering into the reactor. Samples of compounds after degradation process were taken from reactor for the subsequent analysis. Analysis of the products proceeded in a gas chromatogram linked to mass spectrometer. The decomposition products were adsorbed in the SPME filaments or in sorption tubes. The decomposition products were analysed also through the mean of Testo 350 M/XL. This apparatus provided the information on the concentration of small molecules such as CO, H2, NO, NO2 and CxHy Hexane, cyclohexane and xylene were used as VOC examples. Analysis of GC-MS showed decomposition products of hexane, cyclohexane and xylene. The decomposition products were especially various alcohols, ketones, aldehydes and benzene compounds. The apparatus Testo 350 M/XL was unable to detect any CxHy, only large quantity of NO2. This thesis was further focused on possible factors which could have an influence on degradation of compounds, for example input power or different flow of oxygen. It was found that increasing power declined the removal efficiency. The maximum removal efficiency was 87 % for degradation of hexane at the lowest input power. Next part of this thesis was focused on diagnostics of plasma generated in the surface discharge form. The optical emission spectroscopy has been chosen as the best method for plasma characterisation. By this method, various important discharge parameters can be determined, e.g. vibration and rotation temperature. The obtained numeric value of rotation temperature was 840±80 K and vibration temperature was 1880±140 K. The obtained results may be used as a fundament for further study of VOC decomposition in surface discharge.
Study of electrolytic influence on organic dye decomposition in the diaphragm discharge in liquids
Davidová, Jaroslava ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
This Bachelor thesis is focused on study of chemical and physical influences which are proceed in diaphragm discharge in water solution. These processes could be used in water treatment. If DC non-pulsed voltage is applied, a significant influence of electrolysis must be taken into account. The main goal of this thesis is the estimation of electrolytic contribution to processes in the discharge. Theoretical part describes basic theory about creation of electrical discharges in water and electrolysis with emphasis on processes leading to destruction of organic compounds. Production of reactive particles (radicals, hydrogen peroxide, ozone, etc.) and electrochemical reactions on electrodes mainly belongs among these processes. This part describes analytical method (UV-VIS spectroscopy) which was used for determination of organic dyes concentration as well. Experimental part is oriented to experiment procedure which was carried out in an apparatus with separated anode and cathode area. Separation was made by dielectric diaphragm with a pinhole in the centre. Its initial diameter was 0.25 mm. Electrolytic decomposition was carried out at constant current of 30 mA and supplied power was about 14–32 W. Two Saturn dyes (Direct Blue 106 and Direct Red 79) were selected for experiments. As the decomposition was related to decoloration of the solution, UV-VIS spectroscopy in the range of 350–700 nm was used for determination of dye concentration. Next part focused on results presents various factors which had remarkable effect on decomposition of organic dyes. These factors were: various polarities of electrodes, conductivity and pH of solution, applied power, kind of electrolyte and structure of organic dye. The electrolysis had the significant influence on decomposition of small organic molecules. Decomposition was running mainly in the anode area where so called negative discharge was created. Optimal conditions were set by NaCl electrolyte with concentration providing initial conductivity of 500 S·cm-1. By the NaNO3 electrolyte half decomposition efficiency was achieved and in Na3PO4 electrolyte, the decomposition even didn’t run. The decomposition in the anode area was stimulated by the low pH value, which was decreasing during electrolysis. Generally, higher decomposition was achieved by the discharge than by pure electrolysis but the electrolysis had higher efficiency. In pure electrolysis, high rate of removal can be achieved by the application of a relatively low power. When bigger organic molecules were decomposed, the efficiency was higher by applying the discharge.
Recognition of the professional qualification as a tooll for pursuing of the profession in the EU member states
Tesař Rašková, Zuzana ; Štangová, Věra (advisor) ; Brádlerová, Libuše (referee)
The main objective of this work is to analyse the system of recognition of professional qualifications within the EU as a tool to access and pursue a certain profession. It is an important condition for the realization of one of the fundamental EU freedoms, which is free movement of labour. Regardless of the adoption of the Professional Qualifications Directive in 2005, the area of recognition of professional qualifications has quite a long history in the EU. From a legal point of view this legislation is important because it provides the functionality of the free movement of labour. Mobility of qualified professionals in the European Union is still at a relatively low level. To some extent, these skills shortages could be filled by people with professional qualifications obtained outside the EU, who however currently face major problems in having their qualifications recognized. To take full advantage of the freedom of movement, their qualifications must be easily recognized in other Member States. It is therefore essential that the Professional Qualifications Directive sets out clear and simple rules for the recognition of professional qualifications. Millions of professionals in Europe benefit from these rules nowadays. It is estimated that the system of automatic recognition on the basis of...
Study of volatile hydrocarbon decomposition in non-thermal plasma of gliding arc at atmospheric pressure
Töröková, Lucie ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
Diploma thesis deals with gliding arc discharge in non-equilibrium plasma, its properties and usage for dissociation of volatile organic compounds. Plasma techniques create a perspective alternative to classical methods such as adsorption, biofilters, thermal processes, freezing and condensation. The method used for analysis of dissociation products is described in the theoretical part as well. Method is gas chromatography and it is combined with mass spectroscopy. The experimental part contains the overall description of GlidArc reactor where volatile organic compounds were dissociated. The volatile organic compound is brought into the reactor from the reservoir by carrier gas (nitrogen); synthetic air was used as working gas. The reactor is connected to the device for sampling. This device has several openings for sampling by SPME fibre method, sorption tubes method and a special opening for probe entry from the device Testo 350 M/XL, which enables instant analysis of low-molecular compounds. GC-MS was used for determination of high-molecular products of dissociation. Products sorbed on SPME fibres were analysed directly, compounds sorbed by active carbon were extracted by carbon disulphide. Samples obtained using SPME fibres were analysed. The major products of the dissociaton were found due to this analysis, those major products are in the case of hexane: pentanal, 4 methyl-3-pentanal, 2-butoxy-ethanol, pentane a 2-hexene. Major products detected when dissociating cyclohexane were: l,3-dimethyl-butane, propanal, cyklohexanone, 5-hexenal a 2-pentyn-1-ol. Major products of xylene dissociation were methyl-benzene, benzaldehyde, 4-methyl-benzaldehyde, 1-nitroethyl-benzene a benzenmethanol. After analysis obtained using sorption tubes showed that mainly the dissociated compound was sorbed, but the products of the dissociation were presented in too low concentration for an adequate analysis. For that reason the sorption tubes were used only for quantitative determination of the compounds depending on the power supply. The dependence of the dissociation of the compounds on the power supply was observed using SPME fibres which were used for quantitative determination. The Results obtained by both obtained techniques were almost in accordance. Speaking of low-molecular compounds, dissociation of all compounds gave the same products, i.e. carbon dioxide, hydrogen, nitrogen oxide, nitrogen dioxide and water. The results show that the dissociation of VOC gives - besides many potentially dangerous dissociation products - significant amounts of nitrogen oxides which is harmful to the environment. Hence it is necessary to be concerned with problems studied in the future mainly with respect to limitation of NOx generation. It will be possible to optimalize the conditions of the VOC dissociation on the basis of future kinetic analysis.
Study of volatile hydrocarbon decomposition in non-thermal plasma of surface discharge at atmoapheric pressure
Věrná, Jana ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
The main goal of this thesis was to study plasma generated by surface discharge and its application in volatile organic compound destruction. Introduction of this thesis deals with the issue of volatile organic compound. The term of volatile organic compound was defined and explained. Summary of the most important sources of volatile organic compound emissions and possible technics for their elimination was presented. This thesis drew attention on negative aspects of volatile organic compounds on human organism and on the whole environment. The problems of surface discharge and its possible application in various branches are known only few years therefore construction of plasma reactor itself was the first independent step of this work. The plasma reactor was consisted of electrode, which was created from the series of metal stripes each other separated by dielectric barrier. On the surface of the electrode, discharge was regulated and distributed. For the reason of technical limits experiment time was limited up to one minute. The experimental part describes reactor for surface discharge and other parts of apparatus in which degradation volatile organic compound was carried out. Nitrogen was used as carrier gas and it was mixed with air before entering into the reactor. Samples of compounds after degradation process were taken from reactor for the subsequent analysis. Analysis of the products proceeded in a gas chromatogram linked to mass spectrometer. The decomposition products were adsorbed in the SPME filaments or in sorption tubes. The decomposition products were analysed also through the mean of Testo 350 M/XL. This apparatus provided the information on the concentration of small molecules such as CO, H2, NO, NO2 and CxHy Hexane, cyclohexane and xylene were used as VOC examples. Analysis of GC-MS showed decomposition products of hexane, cyclohexane and xylene. The decomposition products were especially various alcohols, ketones, aldehydes and benzene compounds. The apparatus Testo 350 M/XL was unable to detect any CxHy, only large quantity of NO2. This thesis was further focused on possible factors which could have an influence on degradation of compounds, for example input power or different flow of oxygen. It was found that increasing power declined the removal efficiency. The maximum removal efficiency was 87 % for degradation of hexane at the lowest input power. Next part of this thesis was focused on diagnostics of plasma generated in the surface discharge form. The optical emission spectroscopy has been chosen as the best method for plasma characterisation. By this method, various important discharge parameters can be determined, e.g. vibration and rotation temperature. The obtained numeric value of rotation temperature was 840±80 K and vibration temperature was 1880±140 K. The obtained results may be used as a fundament for further study of VOC decomposition in surface discharge.
Study of processes during the organosilicone thin films deposition
Flamíková, Kristýna ; Rašková, Zuzana (referee) ; Krčma, František (advisor)
The aim of this work is plasma diagnostic during the deposition of thin films based on organosilicone compounds. Tetravinylsilane (TVS) was used in this study; the optical emission spectroscopy was applied for the diagnostics. The theoretical part of this work gives a basic fundaments of optical emission spectroscopy and brings the procedures for rotational, vibrational, and electron temperature calculations. The deposition process was carried out in pulsed regime with duty cycle 1:4 to 1:499. The pure TVS and TVS containing 10, 40 and 80 % with total gas mixture flow rate of 0.5 sccm were used during the deposition. The hydrogen atomic lines and many rotational lines of molecular hydrogen were identified in the spectra. Besides them, the molecular band of SiH, CH and C2 were observed. The atomic oxygen lines and continuum with a maximum at 550 nm were recorded in the case when oxygen was added. The rotational temperature calculated from 0-0 CH band was in the range 1700 - 2100 K depending on the discharge conditions. The electron temperature of about 1800 K was calculated from hydrogen atomic lines. The experimental results showed the partial plasma composition and some plasma basic characteristics were obtained.
Study of electrolytic influence on organic dye decomposition in the diaphragm discharge in liquids
Davidová, Jaroslava ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
This Bachelor thesis is focused on study of chemical and physical influences which are proceed in diaphragm discharge in water solution. These processes could be used in water treatment. If DC non-pulsed voltage is applied, a significant influence of electrolysis must be taken into account. The main goal of this thesis is the estimation of electrolytic contribution to processes in the discharge. Theoretical part describes basic theory about creation of electrical discharges in water and electrolysis with emphasis on processes leading to destruction of organic compounds. Production of reactive particles (radicals, hydrogen peroxide, ozone, etc.) and electrochemical reactions on electrodes mainly belongs among these processes. This part describes analytical method (UV-VIS spectroscopy) which was used for determination of organic dyes concentration as well. Experimental part is oriented to experiment procedure which was carried out in an apparatus with separated anode and cathode area. Separation was made by dielectric diaphragm with a pinhole in the centre. Its initial diameter was 0.25 mm. Electrolytic decomposition was carried out at constant current of 30 mA and supplied power was about 14–32 W. Two Saturn dyes (Direct Blue 106 and Direct Red 79) were selected for experiments. As the decomposition was related to decoloration of the solution, UV-VIS spectroscopy in the range of 350–700 nm was used for determination of dye concentration. Next part focused on results presents various factors which had remarkable effect on decomposition of organic dyes. These factors were: various polarities of electrodes, conductivity and pH of solution, applied power, kind of electrolyte and structure of organic dye. The electrolysis had the significant influence on decomposition of small organic molecules. Decomposition was running mainly in the anode area where so called negative discharge was created. Optimal conditions were set by NaCl electrolyte with concentration providing initial conductivity of 500 S·cm-1. By the NaNO3 electrolyte half decomposition efficiency was achieved and in Na3PO4 electrolyte, the decomposition even didn’t run. The decomposition in the anode area was stimulated by the low pH value, which was decreasing during electrolysis. Generally, higher decomposition was achieved by the discharge than by pure electrolysis but the electrolysis had higher efficiency. In pure electrolysis, high rate of removal can be achieved by the application of a relatively low power. When bigger organic molecules were decomposed, the efficiency was higher by applying the discharge.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.