National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Monitoring of the development of the Huntington's disease in transgenic minipigs with N-terminal part of human mutated huntingtin: biochemical and motoric changes of F0, F1 and F2 generation
Kučerová, Šárka ; Ellederová, Zdeňka (advisor) ; Klempíř, Jiří (referee)
Huntington's disease (HD) belongs to neurodegenerative disorders. It is a monogenic disease caused by trinucleotic CAG expansion in exon 1 of gene coding protein huntingtin. Even though the cause of HD is known since 1993, the pathophysiology and cure for HD reminds to be found. The animal models are being used for better understanding of HD. The most common animal models for HD are rodents, especially mice but it was also important to create large animal models, which will be more like human. Therefore, TgHD minipig was created in Academic of Science in Liběchov in 2009. This model was created by microinjection of lentiviral vector carrying N-terminal part of human HTT with 124 repetitive CAG in exon 1. This model is viable and in every generation, is part of the offspring transgenic. In this thesis, I specialized to biochemical and behavioral changes of this model. I compared transgenic and wild type siblings. I found that biochemical changes are manifested mostly by increased level of mtHtt fragments in testes and brain. In behavioral part of this thesis I established new methods for testing behavioral changes in this model. The introduced methods showed some changes between wild type and transgenic animals at the tested ages but these changes were not significant due to the low number of...
Monitoring of the development of the Huntington's disease in transgenic minipigs with N-terminal part of human mutated huntingtin: biochemical and motoric changes of F0, F1 and F2 generation
Kučerová, Šárka ; Ellederová, Zdeňka (advisor) ; Klempíř, Jiří (referee)
Huntington's disease (HD) belongs to neurodegenerative disorders. It is a monogenic disease caused by trinucleotic CAG expansion in exon 1 of gene coding protein huntingtin. Even though the cause of HD is known since 1993, the pathophysiology and cure for HD reminds to be found. The animal models are being used for better understanding of HD. The most common animal models for HD are rodents, especially mice but it was also important to create large animal models, which will be more like human. Therefore, TgHD minipig was created in Academic of Science in Liběchov in 2009. This model was created by microinjection of lentiviral vector carrying N-terminal part of human HTT with 124 repetitive CAG in exon 1. This model is viable and in every generation, is part of the offspring transgenic. In this thesis, I specialized to biochemical and behavioral changes of this model. I compared transgenic and wild type siblings. I found that biochemical changes are manifested mostly by increased level of mtHtt fragments in testes and brain. In behavioral part of this thesis I established new methods for testing behavioral changes in this model. The introduced methods showed some changes between wild type and transgenic animals at the tested ages but these changes were not significant due to the low number of...
Review of karyotype races of mole rats of the genera Spalax and Nannospalax and their geographic distribution
Kučerová, Šárka ; Zima, Jan (advisor) ; Šťáhlavský, František (referee)
Mole rats are divided into two genera, Spalax and Nannospalax who live in the territory of South-East Europe and the Middle East. 5 different karyotypic races found in the genus Spalax that can be assigned to individual taxonomically recognized species. The genus Nannospalax has described in 83 karyotypic form or cytotypes that differ in fundamental characteristics of sets of chromosomes (2n, NF). The diploid number of chromosomes varies from 36 to 62, the number of autosomal arms from 62 to 120 and the number of arms of chromosome sets of females from 68 to 124. The three most commonly recognized species (Nannospalax leucodon, N. xanthodon, N. ehrenbergi) cannot clearly distinguish by karyological.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.