National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Study of low-temperature plasma products using mass spectrometry and their relation to thin film chemistry
Maršálek, Blahoslav ; Bránecký, Martin (referee) ; Čech, Vladimír (advisor)
The aim of this thesis was to analyse and interpret the spectra of tetravinylsilane as a function of plasma discharge power in order to find a relationship between plasma products, layer deposition and thin film chemistry. Another objective was to carry out a literature search in the field of plasma-enhanced chemical vapour deposition (PECVD) and mass spectrometry. Low temperature organosilicate-based plasma technology enables the synthesis of specific materials with controlled chemical and physical properties. The targeted synthesis of surfaces with controlled properties is determined by the atomic and molecular processes in the plasma, which are responsible for building the chemical structure and the resulting material in the form of a thin film. In this work, mass spectrometry has been used to detect and quantify the particles produced in the PECVD process, which is one of the methods that allow the characterization and identification of plasma products. Analysis of the mass spectra revealed that the molecules responsible for the growth of the layer contain carbon and silicon. The deposition rate determined by in situ spectroscopic ellipsometry correlates quantitatively with the flux of carbon and silicon particles that are chemisorbed on the film surface. The ratio of carbon and silicon deposited on the surface also correlates strongly with the C/Si flux ratio of the power driven plasmas. The contribution of silicon-containing particles as building blocks to the film growth decreases with increasing power and accounts for 20% (2 W), 5% (10 W) and only 1% (75 W) of the total chemisorbed fraction. This ratio between bound silicon containing particles and carbon particles affects the elemental composition and chemical structure of the deposited layers. The relationships between plasmachemical processes and particle adhesion on the surface are quite complex. The adhesion of silicon particles first increases sharply to a maximum at 25 W and then gradually decreases, which is characteristic of the so-called precursor-deficient PECVD. Similarly, the concentration of vinyl groups incorporated into the deposited layer and the fraction of sp2 hybridization of carbon correlate with the particle fluxes of the corresponding plasma. This work has demonstrated that mass spectroscopy is a suitable method for the study of plasmachemical deposition from the gas phase (PECVD). PECVD technology is promising for the deposition of silicon-containing layers, which is technologically applicable in many directions of materials research.
Thin films prepared in RF glow discharge and their physico-chemical properties
Bránecký, Martin ; Boušek, Jaroslav (referee) ; Čech, Vladimír (advisor)
Theoretical part of this master thesis was focused on literature recherché dealing with the formation of thin films, plasma, plasma analyses using mass spectrometry and plasma polymerization. Further, this section describes the analysis of thin films using optical methods such as spectroscopic ellipsometry and FT-IR spectrometry. Experimental part describes the materials which are used for the preparation of thin films as well as a description of the equipment for preparation of thin films using a technology of plasma-enhanced chemical vapor deposition (PE-CVD). Control of deposition conditions and monitoring of plasma with its products result in high reproducibility of thin films. The last part of the thesis describes the results of measurement of the first group of samples and their ellipsometric, mass spectrometry and FT-IR evaluation with respect to the deposition conditions.
Synthesis of low-crosslinked polymers by plasma polymerization
Kuchtová, Štěpánka ; Bránecký, Martin (referee) ; Čech, Vladimír (advisor)
This bachelor thesis deals with plasma enhanced chemical vapour deposition (PECVD), specifically plasma polymerisation, which has been used for the synthesis of low density crosslinked polymer thin films. Organosilicon thin films were deposited on a silicon substrate by radio frequency (RF) capacitively coupled plasma in a deposition chamber. Spectroscopic ellipsometry was used to determine the layer thickness and its optical properties. The chemical structure of the layers was investigated by Fourier transform infrared spectroscopy and the mechanical properties were investigated by nanoindentation. The effect of power and self-bias (USB) on the chemical structure, mechanical and optical properties of the as-prepared layers, which are related to the crosslinking density, was investigated in the context of achieving low crosslinking density of the material. Low crosslinked plasma polymers were synthesized at a self-bias level of 1 V, which corresponds to an approximate RF power of 0,1 W. This material can be characterized by a density of 1, 2 g·cm-3 an elastic modulus of 4 GPa, a hardness of 0,04 GPa and a refractive index of 1.53 at 633 nm (He-Ne laser wavelength). Infrared spectroscopy confirmed that this plasma polymer is composed of a carbon network with fewer embedded silicon atoms and, in particular, the highest concentration of vinyl groups compared to plasma polymers prepared at higher powers.
Progressive Amorphous Carbon Alloys Synthesized in Low-Temperature Plasma
Bránecký, Martin ; Trunec, David (referee) ; Kylián,, Ondřej (referee) ; Čech, Vladimír (advisor)
Atomic/plasma polymerization technology is widely used in various technical fields. This work is focused to use the PE-CVD technology in the field of formation of interphase and adhesive layers, which are developed into layered nanostructures. To ensure reproducible chemical and physical properties of the materials, the deposition process was monitored by mass spectrometry. Vapours of the pure tetravinylsilane, or a mixture of these vapours with oxygen, was used as a precursor for atomic polymerization, which results in the thin films with a large variability of properties. Physical and chemical properties were varied by the effective power delivered to the plasma discharge. The deposited films were analyzed from different perspectives using several methods (in situ spectroscopic ellipsometry, FTIR, nanoindentation, AFM). The removal of hydrogen atoms from the carbon-silicon network results in increased crosslinking of the material, which controls the mechanical and optical properties of the deposited layers. From the precisely defined a-CSi:H and a-CSiO:H materials, layered nanostructures composed of 3 and 7 individual layers was subsequently constructed. These nanostructures were analyzed by XPS and RBS to determine the atomic concentrations of carbon, silicon, oxygen and their binding states.
Organosilicon plasma investigated by mass spectrometry
Moravanský, Martin ; Bránecký, Martin (referee) ; Čech, Vladimír (advisor)
This bachelor thesis deals with plasma-enhanced chemical vapor deposition (PECVD) and the use of mass spectrometry to monitor the processes in plasma during the deposition of thin film. Tetravinylsilane plasma was used in the process of forming a thin film on the silicon wafer. The background of the spectrometer, the residual gases in the plasma reactor at basic pressure were characterized and the plasma polymerization process was monitored. This process was monitored with increasing effective power (2-150 W). The obtained mass spectra were assigned and described in detail.
Design and realisation of modifications for metalographic microsection device
Bránecký, Martin ; Adámek, Martin (referee) ; Nicák, Michal (advisor)
This work deals with the metallographic grindings of metallographic samples. The work introduces the reader to the basic principles of metallography and metallographic grindings. Project is especially focused on the quality metallographic grindings, namely from dividing of sample to investigation material of sample, focusing on the grinding of metallographic grindings. The main work is to propose modifications and realizations to the device ROW Rathenow – Metasinex, which is used for grinding of metallographic samples. Modifications are directed towards the automation of device and increase safety in the use of the device. Specifically, the application of additional the sliding arm with clamping mechanism for samples on the device and application control several electronic components.
Organosilicon plasma investigated by mass spectrometry
Moravanský, Martin ; Bránecký, Martin (referee) ; Čech, Vladimír (advisor)
This bachelor thesis deals with plasma-enhanced chemical vapor deposition (PECVD) and the use of mass spectrometry to monitor the processes in plasma during the deposition of thin film. Tetravinylsilane plasma was used in the process of forming a thin film on the silicon wafer. The background of the spectrometer, the residual gases in the plasma reactor at basic pressure were characterized and the plasma polymerization process was monitored. This process was monitored with increasing effective power (2-150 W). The obtained mass spectra were assigned and described in detail.
Study of low-temperature plasma products using mass spectrometry and their relation to thin film chemistry
Maršálek, Blahoslav ; Bránecký, Martin (referee) ; Čech, Vladimír (advisor)
The aim of this thesis was to analyse and interpret the spectra of tetravinylsilane as a function of plasma discharge power in order to find a relationship between plasma products, layer deposition and thin film chemistry. Another objective was to carry out a literature search in the field of plasma-enhanced chemical vapour deposition (PECVD) and mass spectrometry. Low temperature organosilicate-based plasma technology enables the synthesis of specific materials with controlled chemical and physical properties. The targeted synthesis of surfaces with controlled properties is determined by the atomic and molecular processes in the plasma, which are responsible for building the chemical structure and the resulting material in the form of a thin film. In this work, mass spectrometry has been used to detect and quantify the particles produced in the PECVD process, which is one of the methods that allow the characterization and identification of plasma products. Analysis of the mass spectra revealed that the molecules responsible for the growth of the layer contain carbon and silicon. The deposition rate determined by in situ spectroscopic ellipsometry correlates quantitatively with the flux of carbon and silicon particles that are chemisorbed on the film surface. The ratio of carbon and silicon deposited on the surface also correlates strongly with the C/Si flux ratio of the power driven plasmas. The contribution of silicon-containing particles as building blocks to the film growth decreases with increasing power and accounts for 20% (2 W), 5% (10 W) and only 1% (75 W) of the total chemisorbed fraction. This ratio between bound silicon containing particles and carbon particles affects the elemental composition and chemical structure of the deposited layers. The relationships between plasmachemical processes and particle adhesion on the surface are quite complex. The adhesion of silicon particles first increases sharply to a maximum at 25 W and then gradually decreases, which is characteristic of the so-called precursor-deficient PECVD. Similarly, the concentration of vinyl groups incorporated into the deposited layer and the fraction of sp2 hybridization of carbon correlate with the particle fluxes of the corresponding plasma. This work has demonstrated that mass spectroscopy is a suitable method for the study of plasmachemical deposition from the gas phase (PECVD). PECVD technology is promising for the deposition of silicon-containing layers, which is technologically applicable in many directions of materials research.
Synthesis of low-crosslinked polymers by plasma polymerization
Kuchtová, Štěpánka ; Bránecký, Martin (referee) ; Čech, Vladimír (advisor)
This bachelor thesis deals with plasma enhanced chemical vapour deposition (PECVD), specifically plasma polymerisation, which has been used for the synthesis of low density crosslinked polymer thin films. Organosilicon thin films were deposited on a silicon substrate by radio frequency (RF) capacitively coupled plasma in a deposition chamber. Spectroscopic ellipsometry was used to determine the layer thickness and its optical properties. The chemical structure of the layers was investigated by Fourier transform infrared spectroscopy and the mechanical properties were investigated by nanoindentation. The effect of power and self-bias (USB) on the chemical structure, mechanical and optical properties of the as-prepared layers, which are related to the crosslinking density, was investigated in the context of achieving low crosslinking density of the material. Low crosslinked plasma polymers were synthesized at a self-bias level of 1 V, which corresponds to an approximate RF power of 0,1 W. This material can be characterized by a density of 1, 2 g·cm-3 an elastic modulus of 4 GPa, a hardness of 0,04 GPa and a refractive index of 1.53 at 633 nm (He-Ne laser wavelength). Infrared spectroscopy confirmed that this plasma polymer is composed of a carbon network with fewer embedded silicon atoms and, in particular, the highest concentration of vinyl groups compared to plasma polymers prepared at higher powers.
Progressive Amorphous Carbon Alloys Synthesized in Low-Temperature Plasma
Bránecký, Martin ; Trunec, David (referee) ; Kylián,, Ondřej (referee) ; Čech, Vladimír (advisor)
Atomic/plasma polymerization technology is widely used in various technical fields. This work is focused to use the PE-CVD technology in the field of formation of interphase and adhesive layers, which are developed into layered nanostructures. To ensure reproducible chemical and physical properties of the materials, the deposition process was monitored by mass spectrometry. Vapours of the pure tetravinylsilane, or a mixture of these vapours with oxygen, was used as a precursor for atomic polymerization, which results in the thin films with a large variability of properties. Physical and chemical properties were varied by the effective power delivered to the plasma discharge. The deposited films were analyzed from different perspectives using several methods (in situ spectroscopic ellipsometry, FTIR, nanoindentation, AFM). The removal of hydrogen atoms from the carbon-silicon network results in increased crosslinking of the material, which controls the mechanical and optical properties of the deposited layers. From the precisely defined a-CSi:H and a-CSiO:H materials, layered nanostructures composed of 3 and 7 individual layers was subsequently constructed. These nanostructures were analyzed by XPS and RBS to determine the atomic concentrations of carbon, silicon, oxygen and their binding states.

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.