Národní úložiště šedé literatury Nalezeno 28 záznamů.  předchozí9 - 18další  přejít na záznam: Hledání trvalo 0.00 vteřin. 
New Detection System for Fast Density Measurements Using the Lithium Beam on the COMPASS Tokamak
Háček, Pavel ; Berta, M. ; Stöckel, Jan ; Weinzettl, Vladimír ; Anda, G. ; Bencze, A. ; Zoletnik, S.
The lithium beam diagnostic at COMPASS is designed for measurements of the edge plasma density profile and fluctuations and edge plasma current fluctuations. The principle of the diagnostic is detection of light coming from collisionally excited Li atoms — beam emission spectroscopy (BES) - and a direct detection of the ionized part of the beam (atomic beam probe — ABP). For slow density measurements a charged coupled device (CCD) camera has been installed and is already working. For fast twodimensional density profile and density fluctuation measurements an array of avalanche photodiode detectors (APDs) will be used. The two-dimensional resolution of the measurement will be possible using fast poloidal deflection and chopping of the beam. Apart from routine density profile measurement, the diagnostic will be capable of investigating the turbulent structures in the edge plasma by cross-correlating the signals coming from poloidally deflected virtual beams.
Dust Observation in the COMPASS Tokamak Using Fast Camera
Odstrčil, M. ; Mlynář, Jan ; Weinzettl, Vladimír ; Háček, Pavel ; Berta, M. ; Szabolics, T. ; Bencze, A.
The dust grains were observed over a thousand discharges in the tokamak COMPASS. A novel method for semi-automatic extraction and tracking of dust grains using a relatively low frame-rate camera (370 fps) was proposed. Radiation lifetime, time evolution and the acceleration of the dust grains were studied. The measured dust velocities roughly correspond to a simple model. However, slow dust particles are signicantly aected by local plasma properties and initial release conditions that cannot be determined in our experiment
Observation of Sawtooth Oscillations in the COMPASS Tokamak
Imríšek, Martin ; Havlíček, Josef ; Weinzettl, Vladimír ; Mlynář, Jan
The sawtooth instability in tokamak plasmas results in periodic relaxations of the core plasma density and temperature. The physics of sawtooth is still not fully understood. It is predicted that fusion-born alpha particles will lead to long sawteeth. However, longer sawteeth can seed other instabilities which cause further degradation of plasma confinement. This paper provides brief introduction into sawtooth physics and observations of sawtooth instability in COMPASS. Furthermore, evidence of triggering transition to high confinement regime by sawtooth crash is presented
Diagnostic Lithium Beam System for COMPASS Tokamak
Háček, P. ; Weinzettl, Vladimír ; Stöckel, Jan ; Anda, G. ; Veres, G. ; Zoletnik, S. ; Berta, M.
The COMPASS tokamak has been re-installed in IPP Prague after its transport from Culham in UK. A Diagnostic Lithium Beam system is being developed for COMPASS tokamak. Its main goal is to provide edge density (Beam Emission Spectroscopy) and edge plasma current (Atomic Beam Probe) measurements to address the scientific programme focused on H-mode and pedestal physics. It features several newly designed and developed parts, including improved emitter and neutralizer. Atomic Beam Probe is an innovatory diagnostic for measurement of poloidal magnetic field and plasma current fluctuations in the plasma edge. Currently, the system is connected to tokamak (August 2011) and first experiments with plasma were performed. The system still undergoes vacuum, neutralization and high voltage testing. This article reviews the concept and current state of the Lithium Beam diagnostic for COMPASS and provides its first test results.
Data Acquisition System and Data Processing for the New Thomson Scattering System on the COMPASS Tokamak
Aftanas, Milan ; Bílková, Petra ; Böhm, Petr ; Weinzettl, Vladimír ; Stöckel, Jan ; Hron, Martin ; Pánek, Radomír ; Scannell, R. ; Walsh, M.
The Thomson scattering (TS) will be one of crucial plasma diagnostics of the COMPASS tokamak. This newly build-up multi-point system consists of two Nd:YAG lasers (1.6J at 1064nm, 30Hz each) and cascade filter polychromators with avalanche photodiodes. It will enable measurements of both the electron temperature Te (20eV − 5000eV ) and density ne (1019 − 1020m−3) profiles with spatial resolution up to 3mm in the vertical direction in 56 spatial points. The uniquely designed complex data acquisition system based on fast analog digital convertors (1GS/s) reflects the need to retrieve/digitize the signal originated from scattering process of the laser pulse lasting less than 10ns. This paper presents a detailed review of the architecture of the control and the data acquisition (DAQ) system and its features. LabViewr will be used as a main layer for the TS data acquisition. Routines specifically written for controlling the DAQ of TS on COMPASS are presented.
Atomic Beam Probe Diagnostic for COMPASS Tokamak
Háček, Pavel ; Weinzettl, Vladimír ; Stöckel, Jan ; Anda, G. ; Veres, G. ; Zoletnik, S. ; Berta, M.
The COMPASS tokamak has been re-installed in IPP Prague after its transport from Culham in UK. New diagnostic tools are under development to address the scientific program focused on H-mode and pedestal physics. Atomic Beam Probe (ABP) is an innovatory diagnostic for measurement of poloidal magnetic field and plasma current fluctuations in the plasma edge. It is planned to be an extension of the beam emission spectroscopy system by collecting the lithium ions stemming from beam ionization. In the first approximation, ionization is proportional to the local plasma density. The poloidal magnetic field moves the ions toroidally. Therefore, the two-dimensional poloidal-toroidal measurement of the ion current in the exit port reveals information on both the density and magnetic field profiles, thereby also on the edge current profile. This article reviews the concept of the ABP diagnostic and the status of its installation on the COMPASS tokamak.
Measurement of the Laser Beam Position and Width for the Thomson Scattering Diagnostics on Tokamak COMPASS
Aftanas, Milan ; Bílková, Petra ; Böhm, Petr ; Weinzettl, Vladimír ; Stöckel, Jan ; Hron, Martin ; Pánek, Radomír
COMPASS tokamak is equipped with new key diagnostic—Thomson scattering system. This unique multi-point system has been designed with the main aim to investigate electron density and temperature profiles on the COMPASS tokamak (R = 0.56 m, a = 0.18 m, BT max = 2.1 T). The spatial resolution is optimized namely for the pedestal studies (radial spatial resolution a/100). This contribution describes particular steps of optical alignment of the important part of the Thomson scattering system, Nd:YAG lasers (1.6 J at 1064 nm, 30 Hz). Laser beam width has to be precisely measured and laser beam position has to be precisely set before the measurement and checked for all laser shots to be able of decrypting the information about the plasma density and also to improve precision of the measurement. New tool for automatic measurement of the laser beam misalignment is introduced.
Measurements of Ion Temperature in the Edge Plasma of the COMPASS Tokamak
Naydenkova, Diana ; Janky, Filip ; Weinzettl, Vladimír ; Stöckel, Jan ; Šesták, David ; Odstrčil, T. ; Ghosh, J. ; Gomes, R. ; Pereira, T.
The two-grating spectrometer, which has been developed for the ISTTOK tokamak, allows an estimation of the temporal evolution of both ion temperature and poloidal velocity of the edge plasma by analysis of Doppler-shifted and broadened CIII spectral lines at ~465nm. At the current phase of the COMPASS tokamak operation, the first measurements of ion temperature using the optical system based on the spectrometer were performed and first results are presented.
Progress in Multichannel Optical System for Visible Plasma Radiation Measurements at COMPASS Tokamak
Naydenkova, Diana ; Weinzettl, Vladimír ; Stöckel, Jan ; Šesták, David ; Janky, Filip ; Sedlák, L.
The paper outlines main parameters and characteristics of the multichannel optical system for visible plasma radiation measurements, which is currently under construction on the COMPASS tokamak. Alignment of the fiber endpiece and the detector is described in the contribution. Measured spectra in wavelength ranges 250-475 nm and 457–663nm are shown for typical short-lasting discharges of the COMPASS tokamak, which is not yet equipped with a plasma position stabilization system.
Magnetická diagnostika pro zahajovací fázi projektu COMPASS
Havlíček, Josef ; Horáček, Jan ; Weinzettl, Vladimír ; Hronová-Bilyková, Olena ; Naydenkova, Diana ; Zajac, Jaromír
Tokamak COMPASS byl po dvou a půl létech úspěšně reinstalován v Praze. První plazma bylo dosaženo 9.prosince 2008. Následně byly zahájeny práce na uvedení tokamaku do provozu na plný výkon. Tento článek představuje výsledky měření pomocí magnetické diagnostiky během prvního výstřelu a v následující kampani. Jsou ukázány první pokusy o analýzu polohy plazmatu. Je porovnáno magnetické pole spočtené numericky a měřené pomocí Hallových sond.

Národní úložiště šedé literatury : Nalezeno 28 záznamů.   předchozí9 - 18další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.