National Repository of Grey Literature 77 records found  beginprevious58 - 67next  jump to record: Search took 0.01 seconds. 
Role of the oncogenic microRNAs miR-17-92 and miR-155 in the regulation of hematopoietic differentiation and leukemogenesis
Pospíšil, Vít ; Stopka, Tomáš (advisor) ; Pospíšek, Martin (referee) ; Machová Poláková, Kateřina (referee)
(English version): Hematopoietic differentiation is highly ordered multistep process, where generation of terminal blood cells is dependent upon coordinated regulation of gene expression by key regulators: transcription factors and mikroRNAs. PU.1 (Sfpi1) is a versatile hematopoetic transcription factor required for the proper generation of both myeloid and lymphoid lineages. MikroRNAs represent a novel class of ~22 nucleotide long non-coding posttranscriptional regulators that inhibit expression of genes by blocking protein translation or by mRNA degradation. In this PhD thesis I present research data documenting novel mechanisms of regulation and function of two oncogenic mikroRNAs, miR-17-92 cluster and miR-155 and myeloid transcriptional factors PU.1 upon macrophage differentiation of myeloid progenitors. The miR-17-92 cluster (Oncomir1) encodes seven related mikroRNAs that regulate cell proliferation, apoptosis and development and is overexpressed in number of malignancies including myeloid leukemia. Presented PhD thesis documents novel macrophage specific regulatory mechanisms involving the oncogenic cluster miR-17-92. Using transgenic PU.1-/- myeloid progenitors we show that upon macrophage differentiation, the transcription factor PU.1 induces the secondary determinant, the transcription...
To cap or not to cap? Eukaryotic translation initiation with a special interest in human opportunistic pathogen C. albicans
Feketová, Zuzana ; Pospíšek, Martin (advisor) ; Půta, František (referee) ; Vanáčová, Štěpánka (referee)
Candida albicans belongs to serious human opportunistic pathogens, causing severe health complications to immunocompromised patients. To my best knowledge, it is the only organism that survives with unmethylated cap structures found on the 5'ends of mRNA molecules. Using functional assay, I demonstrated that orf19.7626 codes for C. albicans translation initiation factor 4E (Ca4E). We couldn't prove our hypothesis, that Ca4E could be responsible for the unmethylated cap recognition in our model organism S. cerevisiae. Candida sp. possesses also another rather unusual feature - ambiguous CUG codon. In most of the cases, CUG is decoded as a serine, but sometimes also as a leucine. This gives rise to a so called "statistical proteome". One CUG codon is also part of the mRNA coding for Ca4E protein, therefore two versions of Ca4E-Ca4ELeu and Ca4ESer -might occur in C. albicans simultaneously. Both of them are able to rescue deletion of S. cerevisiae eIF4E gene, but they confer temperature sensitivity to the heterologous host. This phenotype is more pronounced with the Ca4ELeu version. We observed milder temperature sensitive phenotype after co-expression of Ca4E together with C. albicans eIF4G (Ca4G). Conformational coupling between eIF4E and eIF4G leads to enhanced affinity of eIF4E to the cap...
Dissecting the nuclear function of the interleukin-1alpha
Novák, Josef ; Pospíšek, Martin (advisor) ; Vondrejs, Vladimír (referee)
Interleukin-1alpha (IL-1alpha) is a well-known proinflammatory mediator acting as a secreted molecule. However, in addition to its ability to activate its membrane-bound receptor, there is growing evidence on its noncanonical nuclear function, which classifies IL-1alpha as a "dual function cytokine". This nuclear action depends on the evolutionary conserved N-terminal domain of IL-1alpha. After proteolytic processing, the N-terminal domain of IL-1alpha translocates into nucleus. Histone acetyltransferase (HAT) complexes were previously identified as nuclear targets of IL-1alpha precursor. However, the specific protein which is responsible for the interaction between IL-1alpha and HAT complexes has not been identified yet. To dissect this interaction, the N-terminal domain of IL-1alpha was produced in yeast. Suitability of this experimental setup for testing the interaction between IL-1alpha and eukaryotic HAT complexes was evaluated in this study. IL-1alpha has been analyzed in this study using bioinformatics approaches as well. Putative amphipatic acidic helixes of IL-1alpha have been characterized. One of the potential binding partners of these domains is protein Ada2. Protein Ada2, mature IL-1alpha and IL-1alpha precursor in fusion with epitopes suitable for affinity purification were produced in...
Screening for the HCV IRES interacting proteins
Roučová, Kristina ; Pospíšek, Martin (advisor) ; Kuthan, Martin (referee)
Hepatitis C virus (HCV) is a worldwide spread pathogen infecting up to 3 % of the human population. Nowadays, research of new drugs against this virus is focused on the individual steps in its life cycle, including the translation initiation. In the case of HCV translation initiation is dependent on the internal ribosome entry site (IRES). Besides of components of the translational machinery also other components of the cell, so called IRES trans-acting factors (ITAF), contribute to its proper progress. This work continues in previous research of our laboratory focused on searching for new ITAF. In order to search for potential ITAF increasing HCV IRES activity new recombinant plasmid vectors and reference strains were prepared and selection conditions of the selection system were optimized. The differences in the growth characteristics of the reference strains were analyzed and quantified under selective and non-selective conditions. A set of pilot high efficiency transformations of the yeast strain pJ69-4A carrying bicistronic construct with HCV IRES were conducted using human expression cDNA library in order to optimize the efficiency of transformation and selection conditions and to attempt to identify new ITAF. Several dozens of randomly selected clones from these transformations obtained under...
Impact of the rRNA modifications on protein synthesis
Kročová, Eliška ; Pospíšek, Martin (advisor) ; Holá, Dana (referee)
A ribosome is a supramolecular structure, which mediates synthesis of all cellular proteins, and therefore is essential for cell life. The fact, that some nucleotides of ribosomal RNA are modified, is known for forty years. However only recently, successful deeper studies on how the individual modifications are synthesized and what is their effect on ribosome synthesis and function appear. Some particular nucleotide modifications are important for the ribosome formation (like m1 acp3 Ψ1191 SSU), some others influence proper function of the ribosome (e.g. Um2921, Gm2922, Ψ2923 LSU, m1 acp3 Ψ1191 SSU). Majority of modified nucleotides in eukaryotic rRNA is being recognized by small nucleolar RNA (snoRNA). Few nucleotides is, however, recognized and subsequently modified by specific proteins. These proteins also play crucial role in ribosome maturation. In thesis presented, current knowledge on the role of ribosomal RNA nucleotide modifications during their formation and maturation, and on their function is summarized and overviewed.
Transcriptional regulation of miR-17-92 microRNA cluster during macrophage differentiation.
Rybářová, Jana ; Stopka, Tomáš (advisor) ; Pospíšek, Martin (referee)
miR-17-92 cluster (Oncomir1) encodes seven microRNAs (miRNA, miR) regulating many biological processes including proliferation, differentiation or apoptosis. Overexpression of microRNAs encoded by miR-17-92 cluster is found in a number of tumors including acute and chronic myeloid leukemias (Dixon-McIver et al., 2008; Li et al., 2008; Venturini et al., 2007). Myeloid progenitors express miR-17-92 cluster at a high level, while macrophage differentiation associates with its downregulation. Our laboratory found, that miR-17-92 cluster is repressed by transcription factor Early growth response 2 (Egr2) upon differentiation of primary myeloid PUER progenitors, induced with transcription factor PU.1. Aim of this thesis is to further test the abovementioned data by preparing a reporter vectors set, carrying various fragments of miR-17-92 putative promoter, which enables us to study regulation of transcription of miR-17-92 cluster. This task complicated by presence of increased GC content of the miR-17-92 promoter was successfully accomplished resulting in amplification of eight fragments containing the various parts of miR-17-92 promoter including region -3.3 to 0 kb relative to the start of miR-17-5p sequence, that were inserted into pGL3 reporter vector. Transfection of pGL3 reporter vector carrying...
Internal ribosome entry site of the hepatitis C virus as a possible target for therapy
Roučová, Kristina ; Čáp, Michal (referee) ; Pospíšek, Martin (advisor)
Hepatitis C virus infects about 3 % of world's population. Progress in molecular biology and better knowledge of hepatitis C virus life cycle contribute to the development of specifically targeted antiviral therapies for HCV. This new treatment also targets the internal ribosome entry site (IRES), which is highly conserved and therefore an attractive target for intervention. In addition, inhibition of IRES function could disable the propagation of the virus early in the HCV life cycle. Novel therapeutics are aimed both at the HCV IRES structure and its nucleotide sequence. Small molecules and synthetic nucleic acids, e.g. antisense oligonucleotides and ribozymes, have been tested as potential therapeutic substances. In this paper particular attention is paid to small molecules interacting with HCV IRES.

National Repository of Grey Literature : 77 records found   beginprevious58 - 67next  jump to record:
See also: similar author names
4 Pospíšek, Marek
2 Pospíšek, Martin
Interested in being notified about new results for this query?
Subscribe to the RSS feed.