No exact match found for Hadraba,, Hynek, using Hadraba Hynek instead...
National Repository of Grey Literature 91 records found  beginprevious41 - 50nextend  jump to record: Search took 0.04 seconds. 
Influence of lamine thickness on bifurcation appearance in ceramic laminate
Sorokina, Kristina ; Ševeček, Oldřich (referee) ; Hadraba, Hynek (advisor)
Z důvodu rozdílných koeficientů délkové teplotní roztažnosti jednotlivých vrstev vzniká ve vrstvách keramického vrstevnatého kompozitního materiálů reziduální napětí. V průběhu chladnutí vrstevnatého kompozitu ze slinovací teploty jednotlivé vrstvy smršťují různými rychlostmi v závislosti na velikosti koeficientu délkové teplotní roztažnosti. Jestliže jsou tyto vrstvy spolu pevně spojeny vzniká v jednotlivých vrstvách různě velké trvalé zbytkové napětí. Velikost residuálního napětí je dána objemovým podílem obou složek v kompozitu. Tato práce byla zaměřena na přípravu a popis 7-mi a 9-ti vrstevných keramických laminátů složených ze střídajících se vrstev dvou rozdílných materiálů. Keramické lamináty byly připraveny pomocí metody suspenzního lití a elektroforetické depozice. U připravených laminátu byl sledován vznik tzv. hranových trhlin (edge cracks) ve vrstvách obsahujících tlaková zbytková pnutí. Výsledky pozorování přítomnosti hranových trhlin pro různou konfiguraci velikosti zbytkových napětí a tloušťky vrstev byly srovnány s teoretickou předpovědí vytvořenou pomocí parametrického 2D modelu. Vliv vzniklých hranových trhlin na průběh lomu byl studován pomocí 3D rekonstrukce lomového povrchu po ohybové zkoušce připravených vrstevnatých kompozitů.
Core-Shell Ceramic Structures Prepared by Thermoplastic Co-Extrusion Method
Kaštyl, Jaroslav ; Pabst, Willi (referee) ; Hadraba, Hynek (referee) ; Trunec, Martin (advisor)
In the doctoral thesis, the bi-layer ceramic bodies with core-shell geometry were prepared by thermoplastic co-extrusion method and for these composite bodies the mechanical properties were studied. For study of co-extrusion and mechanical properties were designed two composite systems. First system ZTA-A combined the dense core ZTA (zirconia-toughened alumina) and the dense shell Al2O3. Second system ZST-Z consisted of porous core and dense shell made from ZrO2 for both cases. In the thesis, the rheology of ceramic thermoplastic suspensions and their mutual influence during co-extrusion was studied. Subsequently, the debinding process and sintering were studied, and based on the optimization of all process steps were obtained defect-free bodies with core-shell geometry. The mechanical properties (elastic modulus, hardness and bending strength) were determined for sintered bodies. To estimate the stress path in the core shell bodies loaded in bending, the relationship considering different elastic moduli of the core and the shell was used. For bodies of ZTA-A system was increased the strength in comparison with monolithic bodies of the individual components. Thus, bodies with high surface hardness of shell from Al2O3 and moreover having high fracture strength in bending were obtained. The effective elastic modulus was decreased for bodies of ZST-Z system up to 25 % in comparison with the elastic modulus of dense monolithic samples. The same effective modulus of elasticity was possible to achieve with core-shell bodies while maintaining significantly higher fracture strength than monolithic porous bodies or pipes.
Technology of Galvanic Anodization of Non-ferrous Materials and Its Alloys
Remešová, Michaela ; Hadraba,, Hynek (referee) ; Čelko, Ladislav (advisor)
The thesis is focused on the theoretical description of the technology of anodizing of aluminium, magnesium, zinc and their alloys. In this work, methods for formation of oxide layers and the used chemical processes are described in detail. The experimental part of this work deals with formation of oxide layers on aluminium, magnesium and zinc of high purity under different conditions. Oxide layers of different thicknesses were created on all three experimental materials. Aluminium was anodized in a bath of 10% H2SO4, magnesium in the bath of 1 mol/dm3 NaOH, and zinc in the bath of 0.5 mol/dm3 NaOH. Processes were carried out at laboratory temperature. On the aluminium, continuous oxide layer was formed. Furthermore rule "312" was verified, that can indicatively be used for calculating the thickness of the resulting oxide layer on the aluminium. When using lower current of 0.08 and 0.2 A for magnesium anodizing, dark colored layer was created comparing to higher current of 0.5 A. More rough appearance of the oxide layer was produced with increasing voltage. Further, it was observed for magnesium that the resulting layer comprises of two sublayers. For zinc, black colored layer was created when the voltage 20 V and current from 0.4 to 0.5 A were used. In the layer, two sublayers were also observed. For lower voltage and current (0.05 A, 0.17 V), formation of the oxide layer on the zinc does not occur, but the crystallographic etching was observed.
Preparation and properties of Bioglass based foam materials
Nedbalová, Radka ; Hadraba, Hynek (referee) ; Dlouhý, Ivo (advisor)
The work deals with the preparation and mechanical properties of coated Bioglass® 45S5 based foam materials with open porosity. The samples have been fabricated applying the replication method with use of polyurethane foam. Furthermore, these samples were coated in order to increase the strength characteristics and crack resistance. Polyvinylalcohol and PVA with cellulose microfibrils have been used as coating. Besides microstructural parameters of investigated materials using the SEM images strength characteristics in compression and in tension were also quantified.
Mechanical alloying and compactization of metallic composite powders
Husák, Roman ; Čelko, Ladislav (referee) ; Hadraba, Hynek (advisor)
Master´s thesis is focus on the proces of mechanical alloying. It is the proces of modifying a hetegeneous mixture of powder materials into a homogeneous composite powder. Experiments are focus on three types of composite materials. A magnetic soft alloy Permalloy, ODS steel based on commercially available powder steel 434 LHC and low-activation high-chrome ODS steel 14Cr-2W. On composite powders are made a series of mechanical tests and chemicel analysis. Based on this tests and analysis it was possible to confirm the milling time needed to create fully homogeneous composite powder. Next step is compaction of composite powder into compact volume and another mechanical tests ana analysis of microstructure. In these analyzes to determine whether i tis necessary to use protective atmosphere during mechanical alloying. All three type of materials succesfull prepared by mechanical alloying. It was found that for created of a fully homogeneous composite powder is necessary to perform mechanical alloying for 24 hours. When processing of corrosion resistant materials, i tis possible to perform mechanical alloying in an air atmosphere. During mechanical alloying materials which are subject to oxidation, i tis necessary to use protective atmosphere.
Small-punch test of structural steels at low temperatures
Němčíková, Eva ; Hůlka, Jiří (referee) ; Hadraba, Hynek (advisor)
Diploma thesis is focused on comparison of small punch test results and tensile test results. For experiments were chosen steel P91, 10Ch2MFA, 20CrNi2MoV, 11 416 and 42 2707. These steel are used in nuclear power engineering, or they were developed for this purpose. Basic mechanical characteristics, namely ultimate tensile stress and yield stress, were evaluated from small punch test records of observed materials. This is done via convenient correlation relationships. Obtained values were compared with values obtained by conventional tensile tests. There are mentioned own suggested correlation relationships and comparison of temperature curves gained from small punch test and tensile test in the thesis. Assessment of microstructure of observed materials and analysis of fracture surfaces was provided as well. It was found out, that for assessing basic mechanical characteristics (ultimate tensile stress and yield stress) is the best to suggest own correlation relationships, instead of using universal relationships from literature. The fracture mechanism of all types of assessed steel was ductile in entire temperature range (up to -40 °C).
Study of sintering of advanced ceramic materials
Stromský, Tomáš ; Hadraba, Hynek (referee) ; Maca, Karel (advisor)
The influence of various pressure-less heating schedules (CRH - Constant Rate of Heating, TSS - Two Step Sintering, RCS – Rate Controlled Sintering) on the final microstructure of cubic zirconia ceramics was studied in this master´s thesis. There were used nanopowders ZrO2 (stabilized with 8 mol.% Y2O3) with initial particle size 80 nm (TZ-8Y) and 140 nm (TZ-8YSB). Powders were cold isostatically pressed and pressure-less sintered in air by different heating regimes. It was found that for both studied materials the modification of conventional sintering (CRH) using lower sintering temperatures and longer sintering dwell times can result in samples with finer microstructure. For example, the sintering of TZ-8YSB ceramics at a relatively low temperature (1270 °C) but for very long time (60 h) led to ceramics with the same final density (99,25 % of theoretical density) and almost identical grains (1,31 m vs. 1,27 m) in compare with TSS (1440 °C/ 1290 °C/ 15 h). On the other hand, RCS method showed no positive effect on the microstructure of both materials in comparison with CRH method. The obtained results indicate that the microstructure of c-ZrO2 ceramics can be influenced rather in its third sintering stage (by CRH and TSS methods) than in the second sintering stage (by RCS method).
High-temperature embrittlement of 14%Cr ODS ferritic steel in liquid lead environment
Dohnalová, Eva ; Čelko, Ladislav (referee) ; Hadraba, Hynek (advisor)
The thesis deals with the high-temperature embrittlement of 14%Cr ODS ferritic steel in liquid lead environment. The 14%Cr ferritic ODS steel ODM401 manufactured by powder metallurgy technology was used as an experimental material. The effect of the long-term annealing, surface corrosion attack in the melt Pb and Pb-Bi on the microstructure and mechanical properties was described. The subsequent microstructural changes were evaluated by means of scanning electron microscopy and transmission electron microscopy The mechanical behaviour of the experimental material was proven by means of microhardness test, impact test and static tensile test. The fractographical evaluation of fracture surfaces were performed on all samples. The surface attack and outstanding microstructural ganges were found after the long-time exposition of the steel in Pb/Pb-Bi melts at temperature 550°C/1000h and 500°C/1000h respectively. The embrittlement of the steel after exposition in Pb/Pb-Bi melts was comparable to the embrittlement after high-temperature annealing of the steel at temperature 650°C/1000h.
The influence of coatings on fracture behaviour of ledeburitic steel
Šafář, Martin ; Jurči,, Peter (referee) ; Hadraba, Hynek (advisor)
This work deals with tool steel Vanadis 6. It describes the preparation of samples for the three-point bending test, with which it examines the influence of surface roughness, the effect of nitriding, coating and duplex coatings on fracture behaviour of the steel. First, it examines bending strength and the total energy required to work of fracture. The work also includes mapping and measurement of surface roughness on different layers. This measurement is performed on a confocal microscope.
High temperature service embrittlement of EUROFER´97 steel
Stratil, Luděk ; Jan, Vít (referee) ; Hadraba, Hynek (advisor)
The thesis describes effect of long-time ageing on the microstructure and properties of the Eurofer´97 steel. The ferritic-martensitic reduced activation steel Eurofer´97 is candidate structural material for in-core components of proposed fusion reactors. Thesis is focused on examination and description of brittle-fracture behaviour of the steel. Properties of the steel were investigated in as-received state and state after long-time ageing. Detailed microstructure studies were carried out by means of optical and electron microscopy and also by means of quantitative electron microscopy. Mechanical properties were evaluated also in both states by means of hardness tetsing, tensile testing and Charpy impact testing. Fractography analysis of fracture surfaces was carried out on samples after Charpy impact testing.

National Repository of Grey Literature : 91 records found   beginprevious41 - 50nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.