National Repository of Grey Literature 79 records found  beginprevious31 - 40nextend  jump to record: Search took 0.01 seconds. 
Experimental modelling of phonation using artificial models of human vocal folds and vocal tracts
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Košina, Jan
The study provides information on experimental research on a complete 1:1 scaled model of human phonation. The model includes human lungs, the trachea, the laryngeal part with artificial vocal folds and the vocal tracts designed for different vowels. The measurement set up enables modelling the time signals not easily measured in humans during phonation as for example fluctuations of the subglottic, laryngeal and oral pressures measured simultaneously with the glottis opening and the glottis area registered by a high-speed camera. The simulation of phonation is performed in the ranges of the airflow rate and the subglottic pressure typical for a normal humans' physiology.
Proposal of hyperelastic proportional damping as dissipated energy model of hard rubbers
Šulc, Petr ; Pešek, Luděk ; Bula, Vítězslav ; Košina, Jan ; Cibulka, Jan
The paper deals with a stress analysis of hard rubber under large torsion deformations. This study was motivated by effort to find the dependency the dissipated energy on the deformation energy. Based on the results of an experiment, a function of dissipation energy of hard rubbers for finite strains using the theory hyperelasticity was proposed herein analogically as a proportional damping for elastic theory. Samples of hard rubber of different hardness (EPDM, Silicone) were dynamically tested on the developed torsional test-rig at different frequencies, amplitudes. First the Mooney Rivlin model (MRM) for a shear case of loading was analytically developed and then MRM constants were attained by fitting of the MRM to the experimental torsion-deformation curve. These constants were used to obtain the deformation energy of the MRM models. The coefficients of hyperelastic proportional damping relating a dissipated energy to a strain energy were evaluated for tested rubbers on the basis of experimental results.
Experimental investigation of phonation using artificial models of human vocal folds and vocal tract
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Košina, Jan ; Vampola, T. ; Dušková, Miroslava
The contribution presents results of in vitro measurements of voicing performed on originally developed models of the human vocal folds and vocal tract. The designed models are based on CT and MRI measurements of human subject during phonation. The measured phonation (aerodynamic, vibration and acoustic) chacteristics are comparable with values found in humans.
Experimental modal analysis of four-planet gear-box in a steady state
Pešek, Luděk ; Bula, Vítězslav ; Šulc, Petr ; Cibulka, Jan
This research report deals with a description and presentation of results of experimental modal analysis of non-rotating four-planet gear-box specific by planets placed on flexible pins designed and fabricated by Wikov Gear. The analysis deals with an evaluation of frequency domain behavior and localization of the main inner resonances of gear-box. The results of the experiment will be used for validation and tuning of developed numerical models in IT AS CR for vibrodiagnostic purposes and description of the gear-box behavior under rotation and with additional aggregates, i.e. engine, add-on bear-box and brake.\n
Experimental analysis of torsion vibration of hard rubbers under large deformation
Šulc, Petr ; Pešek, Luděk ; Bula, Vítězslav ; Cibulka, Jan ; Košina, Jan
The paper deals with a stress analysis of hard rubber under large torsion deformations. This study was motivated by effort to enhance the theoretical background for experimental evaluation of material behaviour of hard rubbers on our test rig. First the Mooney Rivlin model (MRM) for shear case of loading was developed and then MRM constants were attained by fitting of the MRM to the experimental torsiondeformation curve. Then the tuned MRM cylindrical model was tested under torsion loading for evaluation of stress state. Besides the radial distribution of shear stress and strain the attention was paid to evaluation of axial stresses. It could help to assess the influence of the tension stresses on the tangential deformations of the test sample during large torsion.
Phonation characteristics of self-oscillating vocal folds replica with and without the model of the human vocal tract
Horáček, Jaromír ; Bula, Vítězslav ; Košina, Jan ; Radolf, Vojtěch
The experimental study presents in vitro measurements of phonation characteristics performed on the developed 1:1 scaled replica of human vocal folds. The aerodynamic, vibration and acoustic characteristics measured with and without the model of the human vocal tract for vowel [u:] are compared.
Additional axial stress of rubber cylinder at torsion deformations and large strains
Šulc, Petr ; Pešek, Luděk ; Bula, Vítězslav ; Cibulka, Jan ; Košina, Jan
The paper deals with a stress analysis of hard rubber under large torsion deformations. This study was motivated by effort to enhance the theoretical background for experimental evaluation of material behaviour of hard rubbers on our test rig. First the Mooney Rivlin model (MRM) for shear case of loading was developed and then MRM constants were attained by fitting of the MRM to the experimental torsion-deformation curve. Then the tuned MRM cylindrical model was tested under torsion loading for evaluation of stress state. Besides the radial distribution of shear stress and strain the attention was paid for evaluation of additional axial stresses. It helps to assess the influence of the tension stresses on the tangential deformations of the test sample during large torsion strains.
Testing of tip-timing method with multipoint optical system for laboratory measurement of bladed wheel vibration
Pešek, Luděk ; Půst, Ladislav ; Bula, Vítězslav ; Cibulka, Jan
The multipoint optical system for the accurate laboratory measurement of blade vibration under rotation was proposed in IT AS CR. This method is based on the fast optical-elements that register time passages of the blades. The description of the method, results of numerical simulations and first experimental results of the model bladed wheel vibration under rotation are herein presented.
Measurement, analysis and identification of complex modulus of elasticity of a ruber segment pressed onto a rubber-damped whell
Pešek, Luděk ; Šulc, Petr ; Bula, Vítězslav ; Cibulka, Jan
The aim of this study was to measure, analyze and identify the complex modulus of elasticity of rubber segments pressed onto the "Hong Kong" rubber-damped railway wheels in relation to the deformation nodes of wheel vibrations. The main goal was to improve the description of the frequency dependence of the material constants of the rubber segments pressed between the disk and the rim with large pre-stress (about 20%) during the production of the rubber-damped wheel. The solution consists of two parts: a) the modal analysis of the railway wheel, b) the identification of the frequency dependence of Youngś modulus and the loss factor of the wheel rubber by the finite element method. The obtained results are in good accordance with the behavior of hard synthetic rubber.
New method of complex modulus estimation of prepressed rubber by the FE model parameter tuning – rubber-damped wheel application
Šulc, Petr ; Pešek, Luděk ; Bula, Vítězslav ; Cibulka, Jan ; Boháč, T. ; Tašek, H.
The main goal of the study was to develop a method for estimation of the frequency dependence of material constants of the pre-pressed hard synthetic rubbers. It was motivated the need to identify material constants, i.e. Young modulus and loss factor, of rubber segments pressed between the disk and the rim of a rubber-damped railway wheel. The rubber segments are pre-pressed about 20% strain level during the production of the wheel. Hard synthetic rubber materials exhibit complex thermalfrequency behavior with nonlinear dependence on static preload. The standard experimental procedures that evaluate the frequency dependence of the material are based on the vibrations of a cantilever beam that consists of a metal and a rubber layer. The new estimation method of the complex modulus of elasticity of rubber is based on the tuning of rubber constants of an FE wheel model according to the results of natural frequencies and mode shapes of the wheel ascertained from the experiment. Numerical FE model of the wheel consisted of the cyclic model of 1/24 sector of the wheel with an angle of 15° and containing one rubber segment and was created in ANSYS 14.5. Damping model of rubber is described by a special case of proportional damping. For calculating eigenvalues of the problem, the Lanczos method was used for the wheel as an undamped system and QR damped method for the damped system. The experimental modal analysis of the rubber-damped wheel pressed on the shaft took place at room temperature in the dynamic laboratory. Modal tests were performed in configuration with an exciter acting first in the axial direction and consequently in the radial direction of the wheel. Responses to the exactions were measured in three directions at 144 points. The identification of eigenvalues and mode shapes of the wheels was made separately for excitations both in radial and in axial direction.

National Repository of Grey Literature : 79 records found   beginprevious31 - 40nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.