National Repository of Grey Literature 52 records found  beginprevious21 - 30nextend  jump to record: Search took 0.01 seconds. 
Research study of „Tilt pad bearings“ (computational and experimental modelling)
Havlásek, Michal ; Chlud, Michal (referee) ; Malenovský, Eduard (advisor)
The bachelor’s thesis is focused on the computational and experimental modelling of the tilting pad bearings. The computational and experimental modelling is based on solving the lubrication theory provided by English professor Osborn Reynolds, published in 1886. The main part of the thesis is the description of the most widely used computational models, especially TEHD analysis, and the description of the only two experimental devices for the testing of the tilting pad bearings. The thesis is supplemented with the prediction of the development of the computational modelling in the near future.
Optimization of Modal Damping of Blades in High Pressure Stages of Steam Turbine
Lošák, Petr ; Zeman,, Vladimír (referee) ; Pešek, Luděk (referee) ; Kellner,, Josef (referee) ; Malenovský, Eduard (advisor)
Steam turbine rotor is a very complicated assembly, typically consists of several rotor rows. Due to design limitations and increasing demands on the efficiency of the steam turbines, it is practically impossible to avoid all of the resonant states. The significant vibrations can occur, for example, due to passing resonance state during turbine start up or run out. In the worst case the turbine operates state is close to the resonance state of the rotor row. This leads to the significant oscillation of the bladed disk, and may results in the blade (or blade to disk joints) high cycle fatigue. These parts are highly loaded components and any cracks are unacceptable. Therefore it is absolutely necessary to damp vibration by using, for example, passive damping elements. The damping element analyzed in this thesis is a strap with an isosceles trapezoidal cross section, which is placed in the circumferential dovetail groove in the blade segmental shrouding. The sliding between the contact surfaces leads to the dissipation of energy which causes decreasing of undesirable vibrations. The main aim is to design the optimal dimensions of the strap cross-section with a view to the most effective damping of vibration for a particular turbine operating state. Considered bladed disk has 54 blades which are coupled in 18 packets by segmental shrouding. The damping element is paced in circumferential dovetail groove created in the shrouding. This type of damping element is suitable especially for damping vibrations in the axial direction and only with the mode shape with the nodal diameters. The modal properties of the bladed disk are influenced by the sliding distance. Since the friction force depends on centrifugal force acting on the damping element and on the angle of the side walls of the strap and groove, the sliding distance can be influenced by the damping element dimensions. During the optimization process the best possible size of middle width, height and angle of damping element cross-section is searched. The strap weight, contact area size and flexural stiffness of damping element can be influenced by these parameters. Their change has also impact on the size of the contact pressure and thus on the size of relative motion as well. As stated previously, the damping efficiency is influenced by the relative motion between the damping element and shrouding. Numerical simulation in time domain is very time-consuming, especially for systems containing nonlinearities. In order to verify dynamic behavior of the computational model with the passive friction element in numerical simulations, the simplified model is created. The model is created in the ANSYS environment. The main requirement imposed on this model is to have as small number of degrees of freedom as possible, so the time needed to perform the simulation is reduced to a minimum. To satisfy this requirement the simplified model is a cantilever beam with rectangular cross section. The dovetail groove is created in this model in longitudinal direction. In this groove is damping element. In addition to damping element dimensions optimization, the influence of each design variable on model dynamic behavior is studied. The results are verified experimentally. Experiment also shows other interesting results that confirm the damping element influence on the modal characteristics. The gained knowledge is used to optimize the dimensions of the damping element in the model of the bladed disk.
Maple application for performing numerical calculations of examples from
Dřímal, Josef ; Malenovský, Eduard (referee) ; Malenovský, Eduard (referee) ; Pellant, Karel (advisor)
The main purpose of this work is to provide the possibilities of the application of the mathematical software Maple for the solution of practical exercises from solid state mechanics. The examples from kinematics and dynamics are presented, but the relationship to the other subject fields at FME (with the inclusion of informatics) is evident.
Fluid-Structure Interaction between Structural Components of Hydraulic Turbine and Fluid Flow
Havlásek, Michal ; Malenovský, Eduard (referee) ; Vimmr, Jan (referee) ; Pochylý, František (advisor)
Tato dizertační práce se zabývá dvěma případy interakce tělesa s tekutinou (FSI). První z nich se zabývá analýzou vzájemné interakce mezi rotorem čerpadla a kapalinou uvnitř těsnící spáry. Vliv těsnící spáry na dynamiku celého stoje je popsán pomocí dynamických parametrů, které jsou také označovaný jako přídavné účinky. V současnosti používané modely těsnících spár používají pro stanovení dynamických parametrů řadu zjednodušujících předpokladů. V této práci je prezentováno pět různých analýz dynamických parametrů těsnící spáry čerpadla na okysličovadlo. Každá z těchto pěti analýz používá jinou míru zjednodušení výpočetního modelu. V případě největšího zjednodušení je modelován pouze objem kapaliny uvnitř těsnící spáry. Nejkomplexnější analýza pro stanovení dynamických parametrů těsnící spáry používá pro výpočet model celého čerpadla s excentrickou polohou rotoru. Druhá část této dizertační práce definuje novou metodu pro řešení interakce kapaliny s pružným tělesem. Tato metoda využívá řešení inverzního problému kmitání. Přímý problém kmitání, který je také označován jako problém vlastních hodnot, používá jako vstupy pro řešení matice hmotnosti, tuhosti a tlumení, které jsou dohromady označovány jako koeficientové matice, na základě kterých je v nejobecnějším případě stanovena Jordanovská matice a také modální matice pravostranných a levostranných vlastních vektorů. Při řešení inverzního problému kmitání jsou stanoveny koeficientové matice na základě Jordanovské matice a modálních matic pravostranných a levostranných vlastních vektorů. Existují dva případy inverzního problému kmitání. V případě, že jsou známy všechny vstupní vlastní čísla a vlastní vektory, pak se jedná o tzv. plný problém. Naopak v případě, že alespoň 1 mód kmitání soustavy není znám, tak se jedná o tzv. částečný problém. V této práci je prezentováno 5 algoritmů pro řešení inverzního problému v kmitání. Nicméně pro každý typ inverzního problému kmitání je prezentován jeden univerzální algoritmus. Algoritmus pro řešení plných problémů byl poprvé prezentován v roce 1979 Otakarem Daňkem. Algoritmy pro řešení částečných problémů, které jsou prezentovány v této práci, jsou vůbec prvními algoritmy pro řešení tohoto typu inverzního problému kmitání. Univerzální algoritmus pro řešení částečných problémů je označován jako algoritmus pro řešení částečných problémů s volbou doplňkových vlastních hodnot. Aplikace těchto dvou univerzálních algoritmů pro řešení inverzního problému kmitání pro případ plných i částečných problémů je ukázána na řešení dvou případů interakce pružného tělesa s kapalinou.
Maple application for performing numerical calculations of examples from
Dřímal, Josef ; Malenovský, Eduard (referee) ; Malenovský, Eduard (referee) ; Pellant, Karel (advisor)
The main purpose of this work is to provide the possibilities of the application of the mathematical software Maple for the solution of practical exercises from solid state mechanics. The examples from kinematics and dynamics are presented, but the relationship to the other subject fields at FME (with the inclusion of informatics) is evident.
Formulation the Methodology for Analysis the Seismic Response of the Piping Systems with Viscose Dampers
Chlud, Michal ; Salajka, Vlastislav (referee) ; Kanický, Viktor (referee) ; Malenovský, Eduard (advisor)
Viscous dampers are widely used to ensure seismic resistance of pipelines and equipment in nuclear power plants. Damping characteristics of these dampers are nonlinearly frequency dependent and thus causing complications in computational modelling of seismic response. Engineers commonly use two ways to deal with this nonlinearity: The first option is to consider damper by means of “snubber”. This is essentially linear spring element that is active for dynamic load and does not resist static loads. Snubber behaviour during seismic event is described by a equivalent stiffness (sometimes called pseudostiffness). The equivalent stiffness could be defined by the iterative calculations of piping natural frequencies and mode shapes taking into account seismic excitation. However, in complicated structures such as the main circulation loop of nuclear power plant the iterative calculation is difficult and could bring significant inaccuracies. On the other hand, the benefit of such modelling is a possibility to apply the commonly used linear response spectrum method for a solution. The second option is to describe damping characteristics using suitable rheological model. The seismic response is than determined by direct integration of the equations of motion. The behaviour of dampers is described exactly enough but the calculation and post-processing, especially nodal stresses time-histories, are time consuming. The goal of this work was to find a methodology for determining the seismic response of complex pipe systems with viscous dampers. Methodology allows a sufficiently accurate determination of the seismic response of piping systems and also allows obtaining of the results in effective time. The procedure is as follows. Firstly, specialized piping program (AutoPIPE) is used for the development of computational model. Next step is to determine a static response of structure and its verification with experimental measurements, if possible. Using script in Python language a computational model is converted from AutoPIPE into general finite element model in ANSYS system. Four-parameter Maxwell rheological model is used to describe behaviour of viscous dampers. Seismic load is represented by synthetic accelerograms. Newmark algorithm of direct integration of the equation of motion is used to obtain seismic response (only reactions and displacements in nodes of interest are necessary). Than is the equivalent stiffness is than gained from displacements and reactions as median value of their ratios. Received stiffness are subsequently transferred to AutoPIPE program where the seismic solution is performed using response spectra method. Finally, the dynamic response is combined with the static response and stress assessment according standards is done. The created methodology was applied in the seismic resistance calculation of the main circulation piping and piping of pressurizer in nuclear power plants type VVER 440 and type VVER 1000.
Optimization of the Stator Vane Aerodynamic Loading for a Turbocharger with a Variable Nozzle Turbine
Žatko, Miroslav ; Rudolf, Pavel (referee) ; Babák, Martin (referee) ; Malenovský, Eduard (advisor)
Tato práce se zabývá problematikou aerodynamického zatížení statorových lopatek turbodmychadla s variabilní geometrií turbíny a jeho následnou optimalizací. Metody výpočtového modelování tekutin jsou aplikovány s využitím komerčního softwaru ANSYS CFX. Výpočtový model celého turbínového stupně je použit pro analýzu aerodynamického zatížení statorových lopatek v několika polohách a pro různé operační podmínky. Provedená byla detailní analýza vlivu rozložení tlaku v turbínové skříni, úhlu natočení lopatky, jakož i vlivu distančních pinů na aerodynamické zatížení. Následně bylo vyvinuto experimentální zařízení pro přímé měření aerodynamického momentu statorových lopatek s využitím testovacího zařízení s názvem Gas Stand. Toto zařízení spaluje zemní plyn a dokáže vytvořit velmi stabilní podmínky proudění při vysokých teplotách, což umožňuje vyloučit vliv pulzací plynu, vibrací motoru, jakož i vlivu řídící strategie motoru na měřenou veličinu. Výsledky experimentu jsou následně porovnány s vypočtenou hodnotou pomocí CFD modelu a je dosažená velmi dobrá shoda. Validovaný CFD model je následně zredukován s využitím podmínek cyklické symetrie na model jen jednoho segmentu statoru a rotoru. Umožňuje to výrazně zvýšit produktivitu simulací a prozkoumat několik návrhových parametrů statoru v celém rozsahu pohybu statorových lopatek. Provedená analýza citlivosti těchto parametrů položila výborný základ pro jejich následnou optimalizaci a ukázala významný potenciál několika z nich. Na základě analýzy požadavků na aerodynamické zatížení statorových lopatek byla následně vytvořena definice ideálního zatížení, která byla ustavena jako cíl pro jeho optimalizaci. Použitých bylo několik optimalizačních strategií s využitím metody analýzy působících silových vektorů a jejich výsledky byly následně zhodnoceny a porovnány z více aspektů. Výsledné optimalizované řešení bylo následně přepočteno pomocí modelu celého turbínového stupně, čímž se prokázali jeho výborné vlastnosti z hlediska aerodynamického zatížení a zvýšení účinnosti ve spodní části charakteristiky.
Optimization of the Stator Vane Aerodynamic Loading for a Turbocharger with a Variable Nozzle Turbine
Žatko, Miroslav ; Malenovský, Eduard (advisor)
Tato práce se zabývá problematikou aerodynamického zatížení statorových lopatek turbodmychadla s variabilní geometrií turbíny a jeho následnou optimalizací. Metody výpočtového modelování tekutin jsou aplikovány s využitím komerčního softwaru ANSYS CFX. Výpočtový model celého turbínového stupně je použit pro analýzu aerodynamického zatížení statorových lopatek v několika polohách a pro různé operační podmínky. Provedená byla detailní analýza vlivu rozložení tlaku v turbínové skříni, úhlu natočení lopatky, jakož i vlivu distančních pinů na aerodynamické zatížení. Následně bylo vyvinuto experimentální zařízení pro přímé měření aerodynamického momentu statorových lopatek s využitím testovacího zařízení s názvem Gas Stand. Toto zařízení spaluje zemní plyn a dokáže vytvořit velmi stabilní podmínky proudění při vysokých teplotách, což umožňuje vyloučit vliv pulzací plynu, vibrací motoru, jakož i vlivu řídící strategie motoru na měřenou veličinu. Výsledky experimentu jsou následně porovnány s vypočtenou hodnotou pomocí CFD modelu a je dosažená velmi dobrá shoda. Validovaný CFD model je následně zredukován s využitím podmínek cyklické symetrie na model jen jednoho segmentu statoru a rotoru. Umožňuje to výrazně zvýšit produktivitu simulací a prozkoumat několik návrhových parametrů statoru v celém rozsahu pohybu statorových lopatek. Provedená analýza citlivosti těchto parametrů položila výborný základ pro jejich následnou optimalizaci a ukázala významný potenciál několika z nich. Na základě analýzy požadavků na aerodynamické zatížení statorových lopatek byla následně vytvořena definice ideálního zatížení, která byla ustavena jako cíl pro jeho optimalizaci. Použitých bylo několik optimalizačních strategií s využitím metody analýzy působících silových vektorů a jejich výsledky byly následně zhodnoceny a porovnány z více aspektů. Výsledné optimalizované řešení bylo následně přepočteno pomocí modelu celého turbínového stupně, čímž se prokázali jeho výborné vlastnosti z hlediska aerodynamického zatížení a zvýšení účinnosti ve spodní části charakteristiky.
Numerical Simulations of Dynamic Loads in Wheel-Rail Contact with Shape Irregularities
Jandora, Radek ; Malenovský, Eduard (referee) ; Schmidová, Eva (referee) ; Janíček, Přemysl (advisor)
During life of railway vehicles, shape irregularities develop on wheels and rails because of wear. The shape irregularities then affect forces in wheel-rail contact and cause further damage of contact surfaces, vibrations and noise and increase risk of derailment. A numerical simulation of railway vehicle motion with more details on contact surfaces geometry was created to investigate dynamic contact loads in wheel-rail contact. A variety of methods can be used to evaluate forces in rolling contact, the method chosen for this study was algorithm CONTACT based on boundary element method. Four studies are presented in this papers: contact loads from a wheel with a flat and with a wavy tread pattern, loads on wavy rail and load in a curve. The first three studies investigated effects of existing wear patterns, the last one looked for cause of common wear pattern developing on rails. Results of the studies with worn components used showed that the worst kind of shape irregularities is a flat present on wheel. This type of shape cause loss of contact and following impacts. The study of ride in curve showed that cause of high wear in curves, especially those with small radii, is caused by vibration of wheelset. This vibration is then caused by different length of inner and outer rail and wheels travelling along a different path.
New Types of Boundary Conditions for Solution of Fluid Structure Interaction Problems and their Implementation in Commercial Simulation Software
Pohanka, Lukáš ; Pochylý, František (referee) ; Zapoměl, Jaroslav (referee) ; Rudolf, Pavel (referee) ; Malenovský, Eduard (advisor)
New approach for computational modeling of the dynamic behavior of elastic body immersed in incompressible viscous stagnant fluid is described in this work. It is based on determination of added effects (added mass and added damping). This effects are inserted into computational model and it replace influence of the fluid. Commonly used commercial computational software may be used. Approach is based on assumption appropriate for the linear flow. Two pressure field are determined. One for movement of the unite acceleration of the fluid boundary and the second for unite velocity. Nonlinear model (Navier-Stokes equation in ALE form) had to be used for determination of the added damping, hence results are valid only for pre-selected amplitude of vibration.

National Repository of Grey Literature : 52 records found   beginprevious21 - 30nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.