National Repository of Grey Literature 66 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
Numerical Methods in Discrete Inverse Problems
Kubínová, Marie ; Hnětynková, Iveta (advisor) ; Gazzola, Silvia (referee) ; Meurant, Gerard (referee)
Title: Numerical Methods in Discrete Inverse Problems Author: Marie Kubínová Department: Department of Numerical Mathematics Supervisor: RNDr. Iveta Hnětynková, Ph.D., Department of Numerical Mathe- matics Abstract: Inverse problems represent a broad class of problems of reconstruct- ing unknown quantities from measured data. A common characteristic of these problems is high sensitivity of the solution to perturbations in the data. The aim of numerical methods is to approximate the solution in a computationally efficient way while suppressing the influence of inaccuracies in the data, referred to as noise, that are always present. Properties of noise and its behavior in reg- ularization methods play crucial role in the design and analysis of the methods. The thesis focuses on several aspects of solution of discrete inverse problems, in particular: on propagation of noise in iterative methods and its representation in the corresponding residuals, including the study of influence of finite-precision computation, on estimating the noise level, and on solving problems with data polluted with noise coming from various sources. Keywords: discrete inverse problems, iterative solvers, noise estimation, mixed noise, finite-precision arithmetic - iii -
Regularization methods for discrete inverse problems in single particle analysis
Havelková, Eva ; Hnětynková, Iveta (advisor) ; Plešinger, Martin (referee)
The aim of this thesis is to investigate applicability of regulariza- tion by Krylov subspace methods to discrete inverse problems arising in single particle analysis (SPA). We start with a smooth model formulation and describe its discretization, yielding an ill-posed inverse problem Ax ≈ b, where A is a lin- ear operator and b represents the measured noisy data. We provide theoretical background and overview of selected methods for the solution of general linear inverse problems. Then we focus on specific properties of inverse problems from SPA, and provide experimental analysis based on synthetically generated SPA datasets (experiments are performed in the Matlab enviroment). Turning to the solution of our inverse problem, we investigate in particular an approach based on iterative Hybrid LSQR with inner Tikhonov regularization. A reliable stopping criterion for the iterative part as well as parameter-choice method for the inner regularization are discussed. Providing a complete implementation of the proposed solver (in Matlab and in C++), its performance is evaluated on various SPA model datasets, considering high levels of noise and realistic distri- bution of orientations of scanning angles. Comparison to other regularization methods, including the ART method traditionally used in SPA,...
Reorthogonalization strategies in Golub-Kahan iterative bidiagonalization
Šmelík, Martin ; Hnětynková, Iveta (advisor) ; Kučera, Václav (referee)
The main goal of this thesis is to describe Golub-Kahan iterative bidiagonalization and its connection with Lanczos tridiagonalization and Krylov space theory. The Golub-Kahan iterative bidiagonalization is based on short recurrencies and when computing in finite precision arithmetics, the loss of orthogonality often occurs. Consequently, with the aim to reduce the loss of orthogonality, we focus on various reorthogonalization strategies. We compare them in numerical experiments on testing matrices available in the MATLAB environment. We study the dependency of the loss of orthogonalization and computational time on the choice of the method or the attributes of the matrix.
Numerical methods in image processing for applications in jewellery industry
Petrla, Martin ; Hnětynková, Iveta (advisor) ; Plešinger, Martin (referee)
Presented thesis deals with a problem from the field of image processing for application in multiple scanning of jewelery stones. The aim is to develop a method for preprocessing and subsequent mathematical registration of images in order to increase the effectivity and reliability of the output quality control. For these purposes the thesis summerizes mathematical definition of digital image as well as theoretical base of image registration. It proposes a method adjusting every single image to increase effectivity of its subsequent processing. One image for every evaluated gemstone is generated using image registration. The method is implementated in the MATLAB environment. Powered by TCPDF (www.tcpdf.org)
Lineární algebraické modelování úloh s nepřesnými daty
Vasilík, Kamil ; Hnětynková, Iveta (advisor) ; Janovský, Vladimír (referee)
In this thesis we consider problems Ax b arising from the discretization of ill-posed problems, where the right-hand side b is polluted by (unknown) noise. It was shown in [29] that under some natural assumptions, using the Golub-Kahan iterative bidiagonalization the noise level in the data can be estimated at a negligible cost. Such information can be further used in solving ill-posed problems. Here we suggest criteria for detecting the noise revealing iteration in the Golub-Kahan iterative bidiagonalization. We discuss the presence of noise of different colors. We study how the loss of orthogonality affects the noise revealing property of the bidiagonalization.
Numerical computation with functions using Chebfun
Lébl, Matěj ; Tichý, Petr (advisor) ; Hnětynková, Iveta (referee)
Goal of this work is to introduce Chebfun software and show ideas behind it. In the first chapter we summarize the theory of polynomial interpolation with focus on the Chebyshev interpolants. In the second chapter we introduce Chebfun software, its basic commands and principles of constructing interpolants. The third chapter is devoted to demonstrate theorems from the first chapter and to show practical applications of Chebfun when finding roots of a function and solving differential equations. Powered by TCPDF (www.tcpdf.org)
Efficient implementation of dimension reduction methods for high-dimensional statistics
Pekař, Vojtěch ; Duintjer Tebbens, Erik Jurjen (advisor) ; Hnětynková, Iveta (referee)
The main goal of our thesis is to make the implementation of a classification method called linear discriminant analysis more efficient. It is a model of multivariate statistics which, given samples and their membership to given groups, attempts to determine the group of a new sample. We focus especially on the high-dimensional case, meaning that the number of variables is higher than number of samples and the problem leads to a singular covariance matrix. If the number of variables is too high, it can be practically impossible to use the common methods because of the high computational cost. Therefore, we look at the topic from the perspective of numerical linear algebra and we rearrange the obtained tasks to their equivalent formulation with much lower dimension. We offer new ways of solution, provide examples of particular algorithms and discuss their efficiency. Powered by TCPDF (www.tcpdf.org)

National Repository of Grey Literature : 66 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.