National Repository of Grey Literature 12 records found  previous11 - 12  jump to record: Search took 0.01 seconds. 
STRAIN ENGINEERING OF THE ELECTRONIC STRUCTURE OF 2D MATERIALS
del Corro, Elena ; Peňa-Alvarez, M. ; Morales-García, A. ; Bouša, Milan ; Řáhová, Jaroslava ; Kavan, Ladislav ; Kalbáč, Martin ; Frank, Otakar
The research on graphene has attracted much attention since its first successful preparation in 2004. It possesses many unique properties, such as an extreme stiffness and strength, high electron mobility, ballistic transport even at room temperature, superior thermal conductivity and many others. The affection for graphene was followed swiftly by a keen interest in other two dimensional materials like transition metal dichalcogenides. As has been predicted and in part proven experimentally, the electronic properties of these materials can be modified by various means. The most common ones include covalent or non-covalent chemistry, electrochemical, gate or atomic doping, or quantum confinement. None of these methods has proven universal enough in terms of the devices' characteristics or scalability. However, another approach is known mechanical strain/stress, but experiments in that direction are scarce, in spite of their high promises.\nThe primary challenge consists in the understanding of the mechanical properties of 2D materials and in the ability to quantify the lattice deformation. Several techniques can be then used to apply strain to the specimens and thus to induce changes in their electronic structure. We will review their basic concepts and some of the examples so far documented experimentally and/or theoretically.
GRAPHENE UNDER UNIAXIAL DEFORMATION: A RAMAN STUDY
Frank, Otakar ; Tsoukleri, G. ; Parthenios, J. ; Papagelis, K. ; Riaz, I. ; Jalil, R. ; Novoselov, K. S. ; Kalbáč, Martin ; Kavan, Ladislav ; Galiotis, C.
The presented work summarizes various aspects of uniaxial deformation in monolayer graphene studied by means of Raman spectroscopy. Graphene flakes were subjected to tension - compression uniaxial loading using the cantilever beam technique. The evolution of the Raman single-resonance (G) and double-resonance (2D) bands was monitored at strain levels < 1%. The position of all peaks redshifts under tension and blueshifts under compression. The G peak splitting into two sub-bands (G(-) and G(+)) which is caused by symmetry lowering, is observed in both strain directions. The sub-bands' intensities are used to calculate the crystal lattice orientation of the measured graphene flakes with respect to the strain axis. The nature and splitting of the 2D band even in the unstrained flakes, when excited by the 785 nm (1.58 eV) laser line, is interpreted as the interplay between two distinct double resonance scattering processes.

National Repository of Grey Literature : 12 records found   previous11 - 12  jump to record:
See also: similar author names
3 Frank, Ondřej
Interested in being notified about new results for this query?
Subscribe to the RSS feed.