National Repository of Grey Literature 103 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Computational modelling of blood flow in the carotid artery with serial stenosis
Lukáš, Petr ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
The aim of this bachelor's thesis is to analyse the effect of double stenosis on flow and stress characteristics in the carotid artery. First, based on the stated literature, a literature search is conducted regarding blood flow in the arterial system. Then, the procedure of creating idealized models of an artery with double stenosis and the procedure of mesh creation and numerical solution are described. The models have different size of the stenosis and different distance between stenosis. In the final stage, the results are analysed first for stationary flow, then one model is selected on which is performed the analysis for pulsating flow. Analytical calculation of pressure drop and comparison with numerical calculation is also part of this work.
Optimization of modal properties of the body in the air flow
Matějka, Jan ; Švancara, Pavel (referee) ; Skalka, Petr (advisor)
The bachelor thesis deals with dynamic analysis of the rod body, which is excited by the Karmán vortices. In this thesis a method of countermeasure is also verified, which could be possibly used in order to supress the state of resonance in the body and which could minimalize the influence of the Karmán vortices on the structure. This method consists in change of the mass in specific parts of the body in order to change modal properties of this body. The main goal of the thesis is to find suitable configurations of the mass distribution depending on air flow velocity for purpose of minimalization the influence of the Karmán vortices on the construction. This is achieved by optimization of modal properties. The optimization is based on results of harmonic analysis and is considering possibility of practical use.
Modal analysis of vocal folds models with descrete parameters
Lekeš, Filip ; Švancara, Pavel (referee) ; Hájek, Petr (advisor)
Bachelor’s thesis deals with modal analysis of computed models of human vocal folds. It’s about finite element and analytical model where values first eigenfrequencies come under male vocal folds. Research part applies to biomechanics of vocal the human voice, which is followed by an overview of computational models. Finite element model is completely created and solved by ANSYS Workbench commercial program, which uses the finite element method to simulate a problem. Solution of analytical model uses freely available Python programming language. Analysis of the results and comparison of approaches belong to main objectives of the presented work. The proposed analytical model can serve future students for detailed understanding of human vocal oscillations.
Simulation modelling of blower system
Gajdík, Michal ; Švancara, Pavel (referee) ; Hadaš, Zdeněk (advisor)
This diploma thesis is focused on simulation modeling of Roots blowers, which are produced by Kubicek VHS company. First part of this thesis is about oscillations and its damping. In following phase are analyzed each methods realization and control of oscillation damping. Second part of this thesis is focused on Roots blower modelling with rigid and flexible parts and its verification. Output of this thesis is dynamic analysis of Roots blower 3D28C. On attached CD are program annex and project in Adams MSC. Aim of this thesis is proposing adjustments, which would reduce noise and vibration of analyzed machine.
Influence of exostoses on hearing
Vališová, Šárka ; Švancara, Pavel (referee) ; Pellant, Karel (advisor)
Exostoses are periosteophyte inside the external auditory canal of the human ear. The main objective of this bachelor´s thesis is to determine the potencial impact of the shape modification of the external auditory canal due to occurence of exostoses on the mechanical sound transmission into the internal ear. The task was solved by FEM modelling performed in the ANSYS system. The simple finite element 2D model of the normal human ear has been taken from the diploma thesis B. Ouali: Development of 2D finite element model of human ear (BUT Brno, 2009), the model included the external ear canal, elastic eardrum, otitis cavity with the otitis ossicles and the cavity of the internal ear. The changes simulating exostoses in form of two opposite semicircles were performed. The different size and position of the symmetrical exostoses were studied. The influence of the exostoses on the sound transfer characteristics of the external ear canal was discused. It was processed the set of the audiograms (19 patients). The results of the modelling and the results of the audiology were compared, the preoperativ and the postoperativ stages were considered.
Noise and vibrations of roots blowers
Smrček, Martin ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
This thesis is concerned with the spread of noise in the housing sets blowers, blower vibration, due to the shape of the geometry of the individual parts of the blower and the design of a suitable discharge muffler in order to achieve the highest possible attenuation. Analysis blower and silencer discharge was conducted using the finite element simulation ANSYS 15.0
Computational modeling of the interaction of flowing blood with the artery tube with the atheroma
Freiwald, Michal ; Jagoš, Jiří (referee) ; Švancara, Pavel (advisor)
Předložená diplomová práce se zabývá interakcí mezi proudící krví a krční tepnou, obsahující aterosklerotický plat, za pomoci konečnoprvkové fluid-structure interaction analýzy. První část práce obsahuje souhrn teoretických poznatků, sestávající z kardiovaskulárního systému, cév, souvisejících konstitutivních modelů, reologie krve a úvodu do teorie proudění. Dále je v práci obsažen stručný souhrn současného poznání výpočtového modelování v této oblasti, s důrazem na strukturní a fluid-structure interaction analýzy v oblasti krční tepny, a na použité konstitutivní modely. Experimentální část se soustředí na tvorbu zjednodušeného modelu krční tepny, obsahující aterosklerotický plat, a na tvorbu odpovídajícího modelu krve. Oba modely poté společně vstupují do fluid-structure interaction analýzy, která si klade za cíl pochopit důsledky pulzujícího toku krve na stěnu tepny a na růst aterosklerotického plátu; primárními zkoumanými veličinami jsou první hlavní napětí na stěně tepny, celková deformace stěny tepny, časově zprůměrovaná hodnota smykového napětí na stěně tepny a oscilační smykový index. Všechny výsledky jsou porovnány napříč několika typy analýz, tak aby bylo možné zhodnotit rozdíly a důsledky zvoleného přístupu. Součástí práce je také zjednodušená parametrická studie, která porovnává vliv rostoucího procenta stenózy na vyhodnocované veličiny. V poslední částí práce jsou zhodnoceny výsledky, její limitace a další možnosti výzkumu v této oblasti.
Computational modelling of aerodynamic noise caused by the car’s side mirror
Vobejda, Radek ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
The master’sthesis deals with numerical modelling of aerodynamic noisewhich arisesinside of the carcabin. In the first part ofthe thesis simplified model of geometry of the car and of the inside acoustic pressure arecreated. After that numerical analysis of created models of geometry are doneandvarious models of turbulenceare discussed. The results of these CFD simulationswhere then used for changing the model of geometry of the wing mirror. Outputs of these simulations were used for solving the numerical analysis of noise in the car cabin.
Sound analysis and noise control of personal lift
Fürjes, Vincent ; Švancara, Pavel (referee) ; Pellant, Karel (advisor)
The discussion of the efficiency of the individual noise control proposals from the point of view of personal lift running
Computational modelling of function of the human vocal tract
Ryšavý, Antonín ; Hájek, Petr (referee) ; Švancara, Pavel (advisor)
In the first part of this bachelor's thesis is a brief summary of the biomechanics of the creation of the human voice and an overview of the published computational models of the vocal tract and the area around the head. The second part deals with the computational models of the human vocal tract set to the pronouncing the Czech vowels /a:/ and /i:/ with using the method of transfer matrices and the finite element method. By these methods is perform modal and harmonic analysis. Are investigated the natural frequencies and own vibration shapes of both vowels and course of sound pressure in a specific areas of the vocal tract. The method of transfer matrices is highly depend on the geometry of the tract, particularly on the density of the reference sections and its results in this thesis do not completely agree with the results in the literature. Finite element method is more accurate and its results agree well with results reported in the literature, but the opposite of the transfer matrices method is significantly time consuming. Method of the transfer matrices is more suitable for a large number of calculations or tuning certain parameters. Models created in this bachelor's thesis can serve for the analyse of pathology of voice production, eventually for prediction of surgical procedures in the area of the vocal tract.

National Repository of Grey Literature : 103 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.