National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 

Study of sterilization effect of dielectric barrier discharge on eucaryotic microorganisms
Vojkovská, Hana ; Ing.Hana Grossmannová, Ph.D. (referee) ; Kozáková, Zdenka (advisor)
Nowadays the wide spectrum of decontamination methods are used for the inactivation of microorganism on various materials and subjects. The serious disadvantage of the conventional decontaminations methods is stressing of the exposed material by heat or chemicals. The presented bachelor thesis discusses plasma sterilization, which is more friendly and more effective on the wide spectrum of procaryotic and eucaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species The work was focused on studying of the effect of the dielectric barrier discharge (DBD) operating at atmospheric pressure on bioindicator Aspergillus niger. Plasma was generated in nitrogen and argon. Paper and PET-foil wer used as the carrying medium. The influence of various working conditions on the efficiency of plasma sterilization was studied. Namely it was the influence of plasma exposition time, plasma power density, the type of operating gas and type of the medium supporting the microorganism. According to our results the efficiency of the plasma sterilization increases with increasing plasma power density, resp. the plasma exposition time. When comparing the results observed for the same conditions in argon and nitrogen the higher sterilization effect was reached in argon. The sterilization time was 40 – 120 second in dependence to plasma power density, gas and carrying medium. Furthermore the influence of the carrying medium on the sterilization efficiency was prooved. It was shown, that porous materials have a ”shadowing effect” for microorganisms. The microorganism may penetrate into the paper material and embed in pits and cavities. Such penetration could preclude the interaction of plasma with the microorganism, thereby decreasing the efficiency of spore inactivation. Additionaly paper porosity complicates the detachment of spores into solution, so it is reached less microorganisms as from the PET-foil. The discharge parameters were studied by means of the optical emission spectroscopy.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.