National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Diaphragm discharge in organic dye solutions
Pajurková, Jana ; Možíšková, Petra (referee) ; Kozáková, Zdenka (advisor)
This Diploma thesis was focused on the degradation of dyes Saturn Red L4B (Direct Red 79) and Saturn Blue LB (Direct Blue 106) by DC diaphragm discharge (DC-DD). Supplied power was between 160 and 180 W. Conductivity and pH were changing at each electrode area during the DC diaphragm discharge, therefore the effect of pH and conductivity changes on the dye solution itself were examined. All samples were measured by UV-VIS spectrometer in the wavelength range of 300–800 nm. No significant dependence of dye absorption spectra on conductivity was observed, while pH significantly affected the absorption curves of dyes. Ageing of dye spectra showed significant changes of Saturn Red L4B. Next task was the comparison of dyes destruction efficiency by DC-DD, audiofrequency diaphragm discharge (AF-DD) and electrolysis. Dye decomposition by AF-DD was not observed at set conditions (voltage of 80–120 V, current of 2.2 A and frequency of 2 kHz). In the case of DC diaphragm discharge the electrolysis played an important role. Decomposition efficiency of the dyes by electrolysis was up to 15 %. The pumping effect in the DC diaphragm discharge was also investigated. Although the individual electrode areas were linked only by a small pinhole in a nonconductive barrier (the pinhole diameter of 0.3 mm), solutions of the anode and cathode compartment interacted with each other up to 10 %. Finally, the degradation products of Saturn Red L4B treated by DC-DD in two electrodes parts are also described. Decomposition products were determined by high performance liquid chromatography (HPLC) combined with the mass spectrometer.
Study of influence of organic dye structure on their decomposition in the diaphragm discharge in liquids
Pajurková, Jana ; Fasurová, Naděžda (referee) ; Kozáková, Zdenka (advisor)
The main goal of presented thesis is to study the influence of organic dyes structure on its degradation in diaphragm discharge in liquids. Diaphragm discharge is a kind of non-thermal plasma that can be generated in liquids by the application of high voltage. In plasma channels (so-called streamers), many physical and chemical processes are formed. High electrical field, shock waves and last but not least emission of electromagnetic waves in the range of visible and ultra-violet radiation appear among physical processes. The most important chemical process is generation of active species. These species initiate chemical reactions and could attack molecules of organic compounds contained in water solution. The reason why organic dyes were chosen in this study is its visible destruction, because it is related to its decolouration. Further, UV-VIS spectroscopy for the determination of concentration during the experiment can be used. Organic dyes are good models of organic substance often contained in waste water and for which removal classical biological, chemical and physical methods aren’t sufficient. Selected dyes were mostly from the group of azo-dyes: Acid Red 14, Acid Red 18, Acid Yellow 23, Direct Blue 53, Direct Red 79, Direct Red 80, Direct Yellow 29, Food Yellow 3 and further, Acid Blue 74 (indigotic dye) and Direct Blue 106 (oxazine dye). Experiments were carried out in a special batch discharge reactor with the anode and the cathode spaces divided by a non-conductive barrier, where the diaphragm with a pin-hole was placed. Measurement showed different removal in the anode and cathode space. We have supposed it was caused by different streamers features and energetic conditions. Dyes were decomposed with higher efficiency in the anode space where the final concentration reached 40 % of the initial concentration while it remained about 90 % in the cathode space. In this thesis the influence of dyes structure on the dye decomposition by electrical discharge was investigated. Dyes consisted of small molecules and dyes with many substitutes bounded on aromatic ring were decomposed more easily than dyes consisted of big molecules. The shift of characteristic wavelength on both directions (to shorter as well as longer wavelength) was observed during the experiments especially when the Direct dyes were decomposed. This phenomenon was probably due to the formation of intermediate product, which have different characteristic wavelength than the primary compound. In general, colourfulness is given by long conjugated systems of double bonds with substitutes bounded on an aromatic ring. Each change in the molecule structure provides the colour change and this could be the possible reason of the shift of characteristic wavelength. The other task was the comparison of degradation process efficiency by the mean of electrolysis and diaphragm discharge. Results showed that electrolysis (30 W) was more convenient for degradation of dyes consisted of small molecules while diaphragm discharge (130170 W) suited for complex molecules. For degradation of small molecules, oxidation on the anode assumed to be the most effective process that is initiated by electrolysis. For degradation of big molecules, attack of active species produced by the discharge is necessary.
Comparison of organic dye decomposition in various plasma systems
Dotsenko, Anastasia ; Králová, Marcela (referee) ; Kozáková, Zdenka (advisor)
This bachelor thesis deals with the comparison of the degradation of organic dyes (namely: Saturn Red L4B (Direct Red 79) and Indigo Carmine (Acid Blue 74)) in different plasma systems and the general characteristics of the optical emission spectrometry of a microwave plasma nozzle. It briefly summarizes basic information about plasmas and the processes involved. The theoretical part focuses on basic information about plasmas and their processes, basic information about dyes and their degradation methods. Plasma contains a number of active particles such as hydroxyl radicals, nitrogen oxide radicals, excited nitrogen molecules, atomic nitrogen, argon and oxygen. All these particles, together with photons generated by the plasma, are useful in environmental applications. The experimental part focuses on treating a sample of model dyes in selected plasma systems generating plasma above the liquid surface (microwave surface wave discharge, dielectric barrier discharge with liquid electrode) or below it (plasma nozzle in liquid) and evaluating their decomposition rate. Characterization of the distribution of active particles along the plasma axis of a high frequency plasma jet in argon and determination of the conditions in the plasma with respect to the environmental applicability of the system.
Study of culturable anaerobic bacterial communities living in symbiosis with bark beetles; its isolation, taxonomy and biotechnical potential.
Fabryová, Anna ; Garcia-Fraile, Paula (advisor) ; Mrázek, Jakub (referee)
Microbial enzymes implicated in plant cell hydrolysis may have several potential aplications such as biomass degradation biocatalysts or with biofuel production. Bark beetles establish symbiosis with several microbial strains which play different roles benifitting the beetle, as the production of hydrolytic enzymes to degrade the ingested wood, the protection against mirobial antagonist or the detoxification of the environment. Fungal symbionts have been traditionally the best studied, but several recent research with bacterial symbionts of several bark beetle species show that bacterial also display important functions for the host. In this study, the bacterial communities of the bark beetle species Cryphalus piceae and Pithophtorus pithophtorus, collected in the Czech Republic from pine and fir trees, respectively, were isolated and 55 out of 89 samples were identified by 16S rRNA gene amplification and sequencing. Members of the genera Erwinia, Pantoea, Curtobacterium, Yersinia, Pseudomonas and Staphylococcus were detected. The isolates were object of study for their possible biotechnological potential in (ligno)cellulose materials degradation by screening several enzymes implicated in plant cell hydrolysis, as cellulases, xylanases, amylases, laccases, as well as their capability for colorant...
Diaphragm discharge in organic dye solutions
Pajurková, Jana ; Možíšková, Petra (referee) ; Kozáková, Zdenka (advisor)
This Diploma thesis was focused on the degradation of dyes Saturn Red L4B (Direct Red 79) and Saturn Blue LB (Direct Blue 106) by DC diaphragm discharge (DC-DD). Supplied power was between 160 and 180 W. Conductivity and pH were changing at each electrode area during the DC diaphragm discharge, therefore the effect of pH and conductivity changes on the dye solution itself were examined. All samples were measured by UV-VIS spectrometer in the wavelength range of 300–800 nm. No significant dependence of dye absorption spectra on conductivity was observed, while pH significantly affected the absorption curves of dyes. Ageing of dye spectra showed significant changes of Saturn Red L4B. Next task was the comparison of dyes destruction efficiency by DC-DD, audiofrequency diaphragm discharge (AF-DD) and electrolysis. Dye decomposition by AF-DD was not observed at set conditions (voltage of 80–120 V, current of 2.2 A and frequency of 2 kHz). In the case of DC diaphragm discharge the electrolysis played an important role. Decomposition efficiency of the dyes by electrolysis was up to 15 %. The pumping effect in the DC diaphragm discharge was also investigated. Although the individual electrode areas were linked only by a small pinhole in a nonconductive barrier (the pinhole diameter of 0.3 mm), solutions of the anode and cathode compartment interacted with each other up to 10 %. Finally, the degradation products of Saturn Red L4B treated by DC-DD in two electrodes parts are also described. Decomposition products were determined by high performance liquid chromatography (HPLC) combined with the mass spectrometer.
Study of influence of organic dye structure on their decomposition in the diaphragm discharge in liquids
Pajurková, Jana ; Fasurová, Naděžda (referee) ; Kozáková, Zdenka (advisor)
The main goal of presented thesis is to study the influence of organic dyes structure on its degradation in diaphragm discharge in liquids. Diaphragm discharge is a kind of non-thermal plasma that can be generated in liquids by the application of high voltage. In plasma channels (so-called streamers), many physical and chemical processes are formed. High electrical field, shock waves and last but not least emission of electromagnetic waves in the range of visible and ultra-violet radiation appear among physical processes. The most important chemical process is generation of active species. These species initiate chemical reactions and could attack molecules of organic compounds contained in water solution. The reason why organic dyes were chosen in this study is its visible destruction, because it is related to its decolouration. Further, UV-VIS spectroscopy for the determination of concentration during the experiment can be used. Organic dyes are good models of organic substance often contained in waste water and for which removal classical biological, chemical and physical methods aren’t sufficient. Selected dyes were mostly from the group of azo-dyes: Acid Red 14, Acid Red 18, Acid Yellow 23, Direct Blue 53, Direct Red 79, Direct Red 80, Direct Yellow 29, Food Yellow 3 and further, Acid Blue 74 (indigotic dye) and Direct Blue 106 (oxazine dye). Experiments were carried out in a special batch discharge reactor with the anode and the cathode spaces divided by a non-conductive barrier, where the diaphragm with a pin-hole was placed. Measurement showed different removal in the anode and cathode space. We have supposed it was caused by different streamers features and energetic conditions. Dyes were decomposed with higher efficiency in the anode space where the final concentration reached 40 % of the initial concentration while it remained about 90 % in the cathode space. In this thesis the influence of dyes structure on the dye decomposition by electrical discharge was investigated. Dyes consisted of small molecules and dyes with many substitutes bounded on aromatic ring were decomposed more easily than dyes consisted of big molecules. The shift of characteristic wavelength on both directions (to shorter as well as longer wavelength) was observed during the experiments especially when the Direct dyes were decomposed. This phenomenon was probably due to the formation of intermediate product, which have different characteristic wavelength than the primary compound. In general, colourfulness is given by long conjugated systems of double bonds with substitutes bounded on an aromatic ring. Each change in the molecule structure provides the colour change and this could be the possible reason of the shift of characteristic wavelength. The other task was the comparison of degradation process efficiency by the mean of electrolysis and diaphragm discharge. Results showed that electrolysis (30 W) was more convenient for degradation of dyes consisted of small molecules while diaphragm discharge (130170 W) suited for complex molecules. For degradation of small molecules, oxidation on the anode assumed to be the most effective process that is initiated by electrolysis. For degradation of big molecules, attack of active species produced by the discharge is necessary.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.