National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
Preparing of perovskite solar cell
Lunga, Jiří ; Strachala, Dávid (referee) ; Kadlec, Michal (advisor)
The work deals with the theory of preparing perovskite solar cells. How about basic structures and the specific types of training opportunities and reproducibility of results. In the third part describes the complete preparation of the article, which reached the highest efficiency and the procedure for subsequent repetition of the experiment
Study of electrical and dielectric properties of ionic liquids
Maráčková, Lucie ; Nešpůrek, Stanislav (referee) ; Zmeškal, Oldřich (advisor)
This bachelor´s thesis is focused on a study of electrical and dielectric properties of ionic liquids in the form of solution and thin layers. The values of breakdown voltage have been determined from current-voltage characteristics in solutions. Frequency dependencies have been also observed and used for calculation of values of parallel conductivity and capacity of ionic liquid. It was found that solutions is contained by model with one parallel combination of conductivity and capacity. Thin layers have been created by mixing up PEDOT:PSS with two ionic liquids: 1-butyl-3- methylimidazolium trifluoromethanesulfonate and 1-ethyl-3-methylimidazolium tetrafluoroborate. These layers have created electrochemical battery as is evident from current-voltage characteristics. Frequency dependencies are more complex, a model contained two or respectively three parallel conductivities and capacities which have been influenced by PEDOT:PSS and by ionic liquids characteristics.
Preparation and characterization of perovskite solar cells
Juřík, Karel ; Salyk, Ota (referee) ; Pospíšil, Jan (advisor)
This work deals with the perovskite photovoltaic cells. The first part summarises the basic information about this technology and shows the most important milestones in its development. Following part includes the parameters required to characterise the electric properties of a photovoltaic cell and the assessment of its quality. The experimental part of this thesis aims to describe the influence of the annealing time of the perovskite active layer on the final efficiency of created solar cells. The best results were determined to be achieved with the annealing time of 90 minutes.
Development and Innovation of Manufacturing Processes for Thin-Film Solar Cell Functional Layers
Kadlec, Michal ; Vanýsek, Petr (referee) ; Tauš, Peter (referee) ; Vaněk, Jiří (advisor)
The doctoral thesis deals with a group of thin-film photovoltaic cells based on pigment or perovskite absorption layers of light energy. The principal functionality of the cell is based on the capture of light by the pigment on a photosensitized semiconductor anode with subsequent regeneration of the pigment by the electrolyte. In our research we focused on the preparation and optimization of perovskite solar structures based on TiO2/CH3NH3PbI3. A total of six series of experimental solar cells with a perovskite structure were produced. The first two series were realized according to the chemical formula CH3NH3PbI3. In the other series, we applied the theory of added chlorine, resulting in the chemical formula CH3NH3PbI3Cl2. We defined the requirements for the creation of an active perovskite structure in the cell and determined its photovoltaic properties depending on the composition.
Organic solar cells prepared by methods compatible with printing technologies
Babincová, Kristina ; Pospíšil, Jan (referee) ; Zmeškal, Oldřich (advisor)
The theoretical part deals mainly with basic properties of organic materials, which are used in electronics, and especially in the field of photovoltaic cells. The experimental part deals with preparation of photovoltaic cells by deposition from solution, characterization of their basic electrical properties and preparation of a photovoltaic cell with its own pattern. Samples of classical and inverted structures of photovoltaic cells with P3HT and PCBM bulk heterojunction were prepared. Reference samples were prepared under standard conditions (under nitrogen). Their efficiency was around 3 %. In addition, samples were prepared by spin coating under laboratory conditions and by spreading. In both cases, their efficiency was about 1.5 %. Large-scale photovoltaic cells (active area of about 1 cm^2) were prepared in the last experiment presented. Efficiency decreased to 0.75 %. From results mentioned above is clear that very simple methods and procedures that do not impair the price/performance ratio can be used to prepare photovoltaic cells.
Development and Innovation of Manufacturing Processes for Thin-Film Solar Cell Functional Layers
Kadlec, Michal ; Vanýsek, Petr (referee) ; Tauš, Peter (referee) ; Vaněk, Jiří (advisor)
The doctoral thesis deals with a group of thin-film photovoltaic cells based on pigment or perovskite absorption layers of light energy. The principal functionality of the cell is based on the capture of light by the pigment on a photosensitized semiconductor anode with subsequent regeneration of the pigment by the electrolyte. In our research we focused on the preparation and optimization of perovskite solar structures based on TiO2/CH3NH3PbI3. A total of six series of experimental solar cells with a perovskite structure were produced. The first two series were realized according to the chemical formula CH3NH3PbI3. In the other series, we applied the theory of added chlorine, resulting in the chemical formula CH3NH3PbI3Cl2. We defined the requirements for the creation of an active perovskite structure in the cell and determined its photovoltaic properties depending on the composition.
Organic solar cells prepared by methods compatible with printing technologies
Babincová, Kristina ; Pospíšil, Jan (referee) ; Zmeškal, Oldřich (advisor)
The theoretical part deals mainly with basic properties of organic materials, which are used in electronics, and especially in the field of photovoltaic cells. The experimental part deals with preparation of photovoltaic cells by deposition from solution, characterization of their basic electrical properties and preparation of a photovoltaic cell with its own pattern. Samples of classical and inverted structures of photovoltaic cells with P3HT and PCBM bulk heterojunction were prepared. Reference samples were prepared under standard conditions (under nitrogen). Their efficiency was around 3 %. In addition, samples were prepared by spin coating under laboratory conditions and by spreading. In both cases, their efficiency was about 1.5 %. Large-scale photovoltaic cells (active area of about 1 cm^2) were prepared in the last experiment presented. Efficiency decreased to 0.75 %. From results mentioned above is clear that very simple methods and procedures that do not impair the price/performance ratio can be used to prepare photovoltaic cells.
Preparation and characterization of perovskite solar cells
Juřík, Karel ; Salyk, Ota (referee) ; Pospíšil, Jan (advisor)
This work deals with the perovskite photovoltaic cells. The first part summarises the basic information about this technology and shows the most important milestones in its development. Following part includes the parameters required to characterise the electric properties of a photovoltaic cell and the assessment of its quality. The experimental part of this thesis aims to describe the influence of the annealing time of the perovskite active layer on the final efficiency of created solar cells. The best results were determined to be achieved with the annealing time of 90 minutes.
Preparing of perovskite solar cell
Lunga, Jiří ; Strachala, Dávid (referee) ; Kadlec, Michal (advisor)
The work deals with the theory of preparing perovskite solar cells. How about basic structures and the specific types of training opportunities and reproducibility of results. In the third part describes the complete preparation of the article, which reached the highest efficiency and the procedure for subsequent repetition of the experiment
Study of electrical and dielectric properties of ionic liquids
Maráčková, Lucie ; Nešpůrek, Stanislav (referee) ; Zmeškal, Oldřich (advisor)
This bachelor´s thesis is focused on a study of electrical and dielectric properties of ionic liquids in the form of solution and thin layers. The values of breakdown voltage have been determined from current-voltage characteristics in solutions. Frequency dependencies have been also observed and used for calculation of values of parallel conductivity and capacity of ionic liquid. It was found that solutions is contained by model with one parallel combination of conductivity and capacity. Thin layers have been created by mixing up PEDOT:PSS with two ionic liquids: 1-butyl-3- methylimidazolium trifluoromethanesulfonate and 1-ethyl-3-methylimidazolium tetrafluoroborate. These layers have created electrochemical battery as is evident from current-voltage characteristics. Frequency dependencies are more complex, a model contained two or respectively three parallel conductivities and capacities which have been influenced by PEDOT:PSS and by ionic liquids characteristics.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.