National Repository of Grey Literature 14 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Comparison of localization limiters for strain-softening
Květoň, Josef ; Vořechovský, Miroslav (referee) ; Eliáš, Jan (advisor)
It is well known, that simulation of crack propagation using the finite element method is dependent on mesh discretization. The thesis compares two approaches, that are designed to reduce the mesh influence: (I) the crack band model and (II) the nonlocal model. These localization limiters are applied to simulate three-point-bent beam with and without notch. The model of the beam is made with several variants of mesh discretization differing in finite element size and inclination. Performance of both localization limiters is discussed.
Probabilistic discrete model of concrete fracturing
Kaděrová, Jana ; Lehký, David (referee) ; Konečný,, Petr (referee) ; Eliáš, Jan (advisor)
The thesis presents results of a numerical study on the performance of 3D discrete meso–scale lattice–particle model of concrete. The existing model was extended by introducing the spatial variability of chosen material parameter in form of random field. An experimental data from bending tests on notched and unnotched beams was exploited for the identification of model parameters as well as for the subsequent validation of its performance. With the basic and the extended randomized version of the model, numerical simulations were calculated so that the influence of the rate of fluctuation of the random field (governed by the correlation length) could be observed. The final part of the thesis describes the region in the beam active during the test in which the most of the fracture energy is released in terms of its size and shape. This region defines the strength of the whole member and as shown in the thesis, it does not have a constant size but it is influenced by the geometrical setup and the correlation length of the random field.
Analysis of crack propagation using J-integral
Bónová, Kateřina ; Květoň, Josef (referee) ; Eliáš, Jan (advisor)
The bachelor thesis is focused on importance and application of J-integral in crack propagation analysis. J-integral is a method of fracture mechanics used to determine the strain energy release rate. In other words it provides the amount of energy available for crack propagation in elastic and elasto-plastic materials. The thesis presents derivations of relations between J-integral, crack driving force and stress intensity factor. The most important contribution of this thesis is detailed analytical calculation of the J-integral on simple structures. The results are verified by numerical models in ANSYS.
Analysis of stress state and failure in test specimens used for determination of fracture-mechanical parameters of quasi-brittle materials
Holušová, Táňa ; Seitl,, Stanislav (referee) ; Veselý, Václav (advisor)
The thesis is focused on a test on determination of the fracture-mechanical parameters of quasi-brittle materials, especially concrete. What is referred to as the wedge-splitting test is considered, for which a variety of shapes of notched specimen can be used. This work is exclusively focused on the cylinder-shaped specimen of diameter 150 mm and breadth of 100 mm. The test is performed virtually using Atena 2D FEM software. Progress of failure is observed during loading of the specimen for various notch lengths. The amount of energy released for the development the failure outside of the tested cross-sectional area (weakened by the notch) is quantified and the size of the fracture process zone is investigated. The described analysis is performed for several material sets witch differ in cohesive properties of the quasi-brittle material expressed via the so-called characteristic length. Suitable proportions of the test specimen are sought, in order to avoid the failure and thus also the energy dissipation outside of the specimen ligament area during the experimental tests, which shall lead to more accurate estimates of fracture-mechanical parameters of the tested material.
Mechanical fracture parameters of concrete after exposure to high temperatures
Bejček, Michal ; Keršner, Zbyněk (referee) ; Šimonová, Hana (advisor)
The diploma thesis is focused on the evaluation of mechanical fracture parameters of concrete after exposure to high temperatures. In the introductory theoretical part general principles of fracture mechanics with the concentration on a linear elastic fracture mechanics and non-linear fracture models for the concrete are summarized. The meaning of the three-point bending fracture test used for determination of fracture parameters is also explained. Further the influence of high temperatures on the partial components of concrete and general modeling of temperature loading is described. The practical part is concerned with the evaluation of fire experiments on the concrete panels including numerical simulations using GiD and ATENA software. The evaluation of data obtained from the three-point bending test carried out on specimens with initial stress concentrator taken from concrete panels is a main part of the diploma thesis. The values of modulus of elasticity, effective fracture toughness, work of fracture and fracture energy are determined from the measured F–d and F–CMOD diagrams after their proper corrections in the GTDiPS application. The evaluation of the selected mechanical fracture parameters was performed by StiCrack software using effective crack model and work of fracture method and DKFM_BUT software using the double-K fracture model. Finally, the attention is paid to the analysis of the obtained data.
The effect of impurities on the interface cohesion in multilayers in transition metal nitrides
Češka, Jakub ; Zelený, Martin (referee) ; Černý, Miroslav (advisor)
This work deals with the study of transtition metal nitride multilayers using first-principles calculations. Objects of this study are three particular systems AlN / TiN, AlN / VN and TiN / VN. Studied systems are in the B1 structure with an interface along the (001) plane. The main goal is to unravel the effect of impurity on cohesion in these multilayers. The impurity in question is a substitutional O atom replacing N in the lattice. Preferred positions of these substitutions are predicted for three different concentrations of substitution impurity. These predictions are based on the energy balance of substitutions in different positions. Resulting preferred positions within the multilayer may differ depending on the oxygen concentration. In most cases, the preferred position is at the interface between the two nitrides. For such systems with oxygen impurity in the preferred position a cleavage energy along several (001) planes is calculated. The effect of the impurity on the value of cleavage energy depends on its concentration. In the case of AlN / TiN multilayer, a suitable concentration of the impurity may increase the cleavage energy of the weakest link in multilayer compared to clean multilayer. In other cases the presence of impurity either causes a decrease in the cleavage energy or does not significantly affect its value.
Complex evaluation of brittleness of selected building composites
Machačová, Denisa ; Veselý, Václav (referee) ; Keršner, Zbyněk (advisor)
Specified topic of the thesis is a multilevel evaluation of brittleness of selected building composites. The work deals with the opinions of fracture parameters of test specimens of lightweight and ordinary concrete. Specimens further differed fibres content in concrete mixtures, their type and length. The work is divided into two parts, theoretical and practical. The theoretical part conceives composite materials and introduction to fracture mechanics. The practical part describes the different steps for fracture-mechanical parameters evaluation using StiCrack and Excel Visual Basic software. The main part of the work is to evaluate the brittleness of different test specimens, taking into account the type of concrete mix and type of fibres.
The effect of impurities on the interface cohesion in multilayers in transition metal nitrides
Češka, Jakub ; Zelený, Martin (referee) ; Černý, Miroslav (advisor)
This work deals with the study of transtition metal nitride multilayers using first-principles calculations. Objects of this study are three particular systems AlN / TiN, AlN / VN and TiN / VN. Studied systems are in the B1 structure with an interface along the (001) plane. The main goal is to unravel the effect of impurity on cohesion in these multilayers. The impurity in question is a substitutional O atom replacing N in the lattice. Preferred positions of these substitutions are predicted for three different concentrations of substitution impurity. These predictions are based on the energy balance of substitutions in different positions. Resulting preferred positions within the multilayer may differ depending on the oxygen concentration. In most cases, the preferred position is at the interface between the two nitrides. For such systems with oxygen impurity in the preferred position a cleavage energy along several (001) planes is calculated. The effect of the impurity on the value of cleavage energy depends on its concentration. In the case of AlN / TiN multilayer, a suitable concentration of the impurity may increase the cleavage energy of the weakest link in multilayer compared to clean multilayer. In other cases the presence of impurity either causes a decrease in the cleavage energy or does not significantly affect its value.
Probabilistic discrete model of concrete fracturing
Kaděrová, Jana ; Lehký, David (referee) ; Konečný,, Petr (referee) ; Eliáš, Jan (advisor)
The thesis presents results of a numerical study on the performance of 3D discrete meso–scale lattice–particle model of concrete. The existing model was extended by introducing the spatial variability of chosen material parameter in form of random field. An experimental data from bending tests on notched and unnotched beams was exploited for the identification of model parameters as well as for the subsequent validation of its performance. With the basic and the extended randomized version of the model, numerical simulations were calculated so that the influence of the rate of fluctuation of the random field (governed by the correlation length) could be observed. The final part of the thesis describes the region in the beam active during the test in which the most of the fracture energy is released in terms of its size and shape. This region defines the strength of the whole member and as shown in the thesis, it does not have a constant size but it is influenced by the geometrical setup and the correlation length of the random field.
Mechanical fracture parameters of concrete after exposure to high temperatures
Bejček, Michal ; Keršner, Zbyněk (referee) ; Šimonová, Hana (advisor)
The diploma thesis is focused on the evaluation of mechanical fracture parameters of concrete after exposure to high temperatures. In the introductory theoretical part general principles of fracture mechanics with the concentration on a linear elastic fracture mechanics and non-linear fracture models for the concrete are summarized. The meaning of the three-point bending fracture test used for determination of fracture parameters is also explained. Further the influence of high temperatures on the partial components of concrete and general modeling of temperature loading is described. The practical part is concerned with the evaluation of fire experiments on the concrete panels including numerical simulations using GiD and ATENA software. The evaluation of data obtained from the three-point bending test carried out on specimens with initial stress concentrator taken from concrete panels is a main part of the diploma thesis. The values of modulus of elasticity, effective fracture toughness, work of fracture and fracture energy are determined from the measured F–d and F–CMOD diagrams after their proper corrections in the GTDiPS application. The evaluation of the selected mechanical fracture parameters was performed by StiCrack software using effective crack model and work of fracture method and DKFM_BUT software using the double-K fracture model. Finally, the attention is paid to the analysis of the obtained data.

National Repository of Grey Literature : 14 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.