National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Dynamics of modified diamond nanocrystals in living cells
Majer, Jan ; Libusová, Lenka (advisor) ; Fišer, Radovan (referee)
Nanodiamonds (NDs) are an interesting platform in biological applications and disease treatment. Because of their photoluminescence properties and modifiable surface, they have been investigated as potential carriers for drugs and nucleic acids as well as fluorescent probes. In order to design NDs meeting specifically desired parameters, which would succeed in clinical trials and in medicinal therapy, understanding the mechanism of uptake and intracellular fate of NDs is crucial. The diploma thesis is focused on mechanistic investigation of ND-based nanoparticles delivering nucleic acids to human cells. First, NDs coated with a novel cationic co-polymer were prepared. NDs were then complexed with siRNA in order to transfect siRNA inside U-2 OS cells. NDs proved to be biocompatible and effective transfection particles as observed by qPCR and colorimetric cytotoxicity and cell viability tests. To examine ND uptake by cells, we inhibited endocytosis by specific inhibitors. Obtained results implicated that ND uptake was clathrin- and caveolin dependent. Nonetheless, more than half of NDs was internalized by cells in a different fashion. Some NDs colocalized with early endosomes, lysosomes and caveolin-derived endosomes after internalization. Other NDs resided either in unknown cell structures or escaped from...
Dynamics of modified diamond nanocrystals in living cells
Majer, Jan ; Libusová, Lenka (advisor) ; Fišer, Radovan (referee)
Nanodiamonds (NDs) are an interesting platform in biological applications and disease treatment. Because of their photoluminescence properties and modifiable surface, they have been investigated as potential carriers for drugs and nucleic acids as well as fluorescent probes. In order to design NDs meeting specifically desired parameters, which would succeed in clinical trials and in medicinal therapy, understanding the mechanism of uptake and intracellular fate of NDs is crucial. The diploma thesis is focused on mechanistic investigation of ND-based nanoparticles delivering nucleic acids to human cells. First, NDs coated with a novel cationic co-polymer were prepared. NDs were then complexed with siRNA in order to transfect siRNA inside U-2 OS cells. NDs proved to be biocompatible and effective transfection particles as observed by qPCR and colorimetric cytotoxicity and cell viability tests. To examine ND uptake by cells, we inhibited endocytosis by specific inhibitors. Obtained results implicated that ND uptake was clathrin- and caveolin dependent. Nonetheless, more than half of NDs was internalized by cells in a different fashion. Some NDs colocalized with early endosomes, lysosomes and caveolin-derived endosomes after internalization. Other NDs resided either in unknown cell structures or escaped from...
Parasite's life within the host cell.
Krupičková, Alžběta ; Doležal, Pavel (advisor) ; Štáfková, Jitka (referee)
Plasmodium falciparum is one of the most dangerous human intracellular single-celled pathogen. This thesis describes the invasion, the survival and the egress of the pathogen from the host cell (erythrocyte). The main topic of the thesis is the parasite's life within the host cell in a newly created compartment, parasitophorous vacuole. By exploding hundreds of proteins Plasmodium falciparum establishes number of unique modifications inside as well as on the surface of the host cell. The thesis finishes with the chapter on the therapy and possible development of new drugs and the chapter on the parasite evolution. Powered by TCPDF (www.tcpdf.org)

Interested in being notified about new results for this query?
Subscribe to the RSS feed.