National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Study of Exact Spacetimes
Švarc, Robert ; Podolský, Jiří (advisor) ; Pravda, Vojtěch (referee) ; Steinbauer, Roland (referee)
In this work we study various aspects of the behaviour of free test particles in Einstein's general relativity and analyze specific physical properties of the background spacetimes. In the first part we investigate geodesic motions in the four-dimensional constant curvature spacetimes, i.e., Minkowski and (anti-)de Sitter universe, with an expanding impulsive gravitational wave. We derive the simple refraction formulae for particles crossing the impulse and describe the effect of nonvanishig cosmological constant. In the second part of this work we present a general method useful for geometrical and physical interpretation of arbitrary spacetimes in any dimension. It is based on the systematic analysis of the relative motion of free test particles. The equation of geodesic deviation is rewritten with respect to the natural orthonormal frame. We discuss the contributions given by a specific algebraic structure of the curvature tensor and the matter content of the universe. This formalism is subsequently used for investigation of the large class of nontwisting spacetimes. In particular, we analyse the motions in the nonexpanding Kundt and expanding Robinson--Trautman family of solutions.
Study of Exact Spacetimes
Švarc, Robert
In this work we study various aspects of the behaviour of free test particles in Einstein's general relativity and analyze specific physical properties of the background spacetimes. In the first part we investigate geodesic motions in the four-dimensional constant curvature spacetimes, i.e., Minkowski and (anti-)de Sitter universe, with an expanding impulsive gravitational wave. We derive the simple refraction formulae for particles crossing the impulse and describe the effect of nonvanishig cosmological constant. In the second part of this work we present a general method useful for geometrical and physical interpretation of arbitrary spacetimes in any dimension. It is based on the systematic analysis of the relative motion of free test particles. The equation of geodesic deviation is rewritten with respect to the natural orthonormal frame. We discuss the contributions given by a specific algebraic structure of the curvature tensor and the matter content of the universe. This formalism is subsequently used for investigation of the large class of nontwisting spacetimes. In particular, we analyse the motions in the nonexpanding Kundt and expanding Robinson--Trautman family of solutions.
Spinning particles in algebraically special space-times
Šrámek, Milan ; Semerák, Oldřich (advisor) ; Krtouš, Pavel (referee)
Spinning-particle motion is studied, within the pole-dipole approximation, in algebraically special space-times of type N, III and D. The spin-curvature interaction is analysed for the Pirani and Tulczyjew spin supplementary conditions; for N and D types, the condition is related to a relative acceleration of two near observers separated in the direction of particle's spin. For Tulczyjew's condition, the momentum-velocity relation is also studied as well as its consequences for the spin-curvature interaction. Finally, the type of motion is mentioned for which both the supplementary conditions considered are equivalent.
Study of Exact Spacetimes
Švarc, Robert
In this work we study various aspects of the behaviour of free test particles in Einstein's general relativity and analyze specific physical properties of the background spacetimes. In the first part we investigate geodesic motions in the four-dimensional constant curvature spacetimes, i.e., Minkowski and (anti-)de Sitter universe, with an expanding impulsive gravitational wave. We derive the simple refraction formulae for particles crossing the impulse and describe the effect of nonvanishig cosmological constant. In the second part of this work we present a general method useful for geometrical and physical interpretation of arbitrary spacetimes in any dimension. It is based on the systematic analysis of the relative motion of free test particles. The equation of geodesic deviation is rewritten with respect to the natural orthonormal frame. We discuss the contributions given by a specific algebraic structure of the curvature tensor and the matter content of the universe. This formalism is subsequently used for investigation of the large class of nontwisting spacetimes. In particular, we analyse the motions in the nonexpanding Kundt and expanding Robinson--Trautman family of solutions.
Study of Exact Spacetimes
Švarc, Robert ; Podolský, Jiří (advisor) ; Pravda, Vojtěch (referee) ; Steinbauer, Roland (referee)
In this work we study various aspects of the behaviour of free test particles in Einstein's general relativity and analyze specific physical properties of the background spacetimes. In the first part we investigate geodesic motions in the four-dimensional constant curvature spacetimes, i.e., Minkowski and (anti-)de Sitter universe, with an expanding impulsive gravitational wave. We derive the simple refraction formulae for particles crossing the impulse and describe the effect of nonvanishig cosmological constant. In the second part of this work we present a general method useful for geometrical and physical interpretation of arbitrary spacetimes in any dimension. It is based on the systematic analysis of the relative motion of free test particles. The equation of geodesic deviation is rewritten with respect to the natural orthonormal frame. We discuss the contributions given by a specific algebraic structure of the curvature tensor and the matter content of the universe. This formalism is subsequently used for investigation of the large class of nontwisting spacetimes. In particular, we analyse the motions in the nonexpanding Kundt and expanding Robinson--Trautman family of solutions.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.