National Repository of Grey Literature 7 records found  Search took 0.02 seconds. 
Characterisation of Arabidopsis thaliana mutants psbo1 and psbo2
Nykles, Ondřej ; Duchoslav, Miloš (advisor) ; Hála, Michal (referee)
The PsbO protein is necessary for the function of the electron-transport chain of the thylakoid membrane in higher plants. In most of the angiosperms, including Arabidopsis thaliana, this protein has two isoforms termed as PsbO1 and PsbO2. Many authors tried to reveal the fundamental difference between the PsbO1 and PsbO2 with the help of the mutant lines which lack one of the isoforms. The problem is that the mutants in psbO isoforms do not possess the same level of PsbO as WT does. So we made psbo1isoL mutants. These lines contain only one isoform but their level of the whole PsbO is comparable to the level of the whole PsbO of WT. Results from these experiments suggest that if a psbo1isoL plant has the same amount of PsbO as WT does, there is no observable phenotype difference. Thus we were not able to identify, in the usual cultivation conditions, if there are any functional differences between PsbO1 and PsbO2 Following the above mentioned results, we would like to know conditions (if there are any) in which T-DNA insertion mutants psbo2 (respectively psbo2cr which are made with the use of the CRISPR/Cas9), which have only PsbO1 isoform, could be phenotypically distinguished from WT. With the use of usual cultivation conditions, we are unable to tell apart the psbo2 and psbo2cr from WT by the...
Ultrastrucutre of beech chloroplasts under the elevated CO2 concentration and different irradiation
Vrbová, Anna ; Albrechtová, Jana (advisor) ; Kutík, Jaromír (referee)
Forest stands may act as important carbon storage places - sinks, due to carbon allocation into both the plant biomass in the process of photosynthesis and the soil. Enhancement of CO2 concentration affects a whole range of plant physiological processes and, thus, it is necessary to study its effect on photosynthetic apparatus - leaf anatomical structure and chloroplast ultrastructure. The first aim of the Thesis was to evaluate changes in chloroplast ultrastructure of common beech (Fagus sylvatica L.) under the effects of both elevated CO2 concentration and different irradiance. The second aim was to evaluate if the anatomical parameters obtained from the middle part of the leaf are representative for the whole leaf blade. The trees were grown in glass domes at the Bílý Kříž experimental site in the Beskids Mountains (Czech Republic), owned by the CzechGlobe Institute. Leaves were sampled in 2010 from juvenile trees, which were planted in 2005 being 5-year old and cultivated since then in ambient (AC; 390 micromol/mol) and elevated (EC; 700 micromol/mol) CO2 concentrations. The EC effect was recorded to be an increased proportion of starch grains in the chloroplast median section and decreased proportion of of intergranal thylakoids (IGT) while the ratio of granal to intergranal thylakoids...
The regulatory role of cyanobacterial High light inducible proteins
SHUKLA, Mahendra Kumar
The aim of the thesis was to elucidate the role of High light inducible proteins (Hlips) in the protection/regulation of the biogenesis of photosynthesis machinery. During the project two Hlip proteins (HliC and HliD) were isolated from the cyanobacterium Synechocystis PCC 6803; either as a pure oligomer (HliC protein) or as a small complex with a putative Photosystem II assembly factor Ycf39 (HliD protein). Pigments bound to purified Hlips were analyzed by state-of-art spectroscopic techniques to elucidate the mechanism of thermal energy dissipation. In addition, this work explained the mechanism of how the HliC protein regulates the interaction between chlorophyll synthase enzyme and the Ycf39 protein. This conceptually new mechanism is based on the replacement of HliD dimers in chlorophyll synthase complexes by stress-induced HliD-HliC heterodimers, which changes the affinity of Ycf39 towards chlorophyll synthase.
Role of PsbO isoforms in Arabidopsis thaliana
Svoboda, Václav ; Duchoslav, Miloš (advisor) ; Knoppová, Jana (referee)
Role of PsbO isoforms in Arabidopsis thaliana Abstract Photosystem II (PSII) uses sunlight to catalyze water oxidation and reduce plastoquinone. Water oxidation takes place in oxygen evolving complex (OEC). OEC is stabilized by extrinsic subunits of PSII. The largest and most important of them is PsbO, manganese-stabilizing protein which can be found in all known oxygenic photosynthetic organisms. Model plant Arabidopsis thaliana expresses two isoforms of psbO gene, namely PsbO1and PsbO2.Mutants psbo1 and psbo2 lacking PsbO1 and PsbO2, respectively, recently brought new findings on the particular roles of isoforms in maintaining photosynthesis. PsbO1 is commonly considered as the main isoform facilitating water splitting, whereas PsbO2 is believed to be involved in PSII repair process (replacement of photodamaged D1 subunit). This work focuses on particular roles of Arabidopsis PsbO isoforms in maintaining photosynthesis with special focus on response to light stress. Mutants psbo1, psbo2 and wild type plants Col-0 were used for extensive biochemical investigation. Our aim was to find out what is the impact on overall thylakoid structure and composition in mutants. Furthermore, to investigate response to light stress in wild type regarding to yields of particular subcompartments, changes in photosystem II...
Ultrastrucutre of beech chloroplasts under the elevated CO2 concentration and different irradiation
Vrbová, Anna ; Albrechtová, Jana (advisor) ; Kutík, Jaromír (referee)
Forest stands may act as important carbon storage places - sinks, due to carbon allocation into both the plant biomass in the process of photosynthesis and the soil. Enhancement of CO2 concentration affects a whole range of plant physiological processes and, thus, it is necessary to study its effect on photosynthetic apparatus - leaf anatomical structure and chloroplast ultrastructure. The first aim of the Thesis was to evaluate changes in chloroplast ultrastructure of common beech (Fagus sylvatica L.) under the effects of both elevated CO2 concentration and different irradiance. The second aim was to evaluate if the anatomical parameters obtained from the middle part of the leaf are representative for the whole leaf blade. The trees were grown in glass domes at the Bílý Kříž experimental site in the Beskids Mountains (Czech Republic), owned by the CzechGlobe Institute. Leaves were sampled in 2010 from juvenile trees, which were planted in 2005 being 5-year old and cultivated since then in ambient (AC; 390 micromol/mol) and elevated (EC; 700 micromol/mol) CO2 concentrations. The EC effect was recorded to be an increased proportion of starch grains in the chloroplast median section and decreased proportion of of intergranal thylakoids (IGT) while the ratio of granal to intergranal thylakoids...
Biogenesis of Photosystem II in the Model Cyanobacterium Synechocystis sp. PCC 6803 - The Role of Selected Auxiliary Protein Factors and Subcellular Localisation
KNOPPOVÁ, Jana
This thesis explores localisations and roles of three auxiliary protein factors involved in the biogenesis of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803 and contributes to subcellular localisation of the initial steps of PSII biogenesis and repair-related D1 synthesis. The main results consist in i) identification of a functional interaction of the protein factor Psb27 with a lumenal domain of the Photosystem II subunit CP43, ii) discovery of a novel pigment binding complex formed by the Ycf39 protein and high-light-inducible proteins implicated in photoprotection and delivery of recycled chlorophyll to newly synthesized D1 protein during the PSII reaction centre formation, iii) providing evidence that the early steps of PSII assembly and the repair-related D1 synthesis occur in the thylakoid membrane of Synechocystis, and iv) revealing that the cyanobacterial PsbP orthologue, CyanoP, assists in the early phase of PSII biogenesis as an assembly factor facilitating the association of D2 and D1 assembly modules.
Role of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803
KRYNICKÁ, Vendula
This thesis focuses on the functional and structural characterization of FtsH proteases in Synechocystis PCC 6803. One of the aims was to determine localization and subunit organization of FtsH homologues in Synechocystis cells using GST and GFP tagged FtsH derivatives. The main result of the thesis is identification of two FtsH hetero-oligomeric complexes and one homo-oligomeric complex in Synechocystis cells. The large part of the thesis is aimed at establishing the role of the first hetero-oligomeric complex, FtsH2/FtsH3, in quality control of Photosystem II and at identification of a mechanism, how its substrate proteins D1 and D2 are recognized. Another part is dedicated to characterization of the second hetero-oligomeric complex, FtsH1/FtsH3, which consists of two essential FtsH homologues and which is here identified as an important regulatory element in maintaining iron homeostasis.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.