National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Operon structures inference in genome-wide analysis
Nejezchlebová, Julie ; Jurečková, Kateřina (referee) ; Schwarzerová, Jana (advisor)
The bachelor thesis is devoted to the problem of derivation of operon structures and creation of a software tool that allows prediction of operon structures. The tool both predicts operons based on gene expression information, but also refines already predicted operons with gene expression information. The tool is tested on the bacteria Escherichia coli BW25113 and Clostridium beijerinckii NRRL B-598. The theoretical part is devoted to description of operon structure and function, genome sequencing, transcriptome analysis, Clostridium beijerinckii NRRL B-598, Escherichia coli BW25113 and already available online tools for inferring operon structures. In the practical part of the thesis, the pre-processing of raw transcriptomic data to obtain a suitable format for the prediction of operon structures, testing of online tools and the actual implementation of the tool itself are discussed.
Operon identifier: Identification of operon structures in the whole genome
Nejezchlebová, Julie ; Schwarzerová, Jana
Currently, operon prediction is based on the distance of neighboring genes on the functional relationships of their products that encode proteins in a given nucleotide sequence, or on ORF distances. This study deals with the design of a new function that detects operon structures based on information from gene expression or alternatively in combination with previous information from current online available tools. The function was implemented in Python language and tested on Clostridium beijerinckii NRRL B-598. This bacterium has huge potential in biotechnology and research due to its fermentation product, butanol.
Operon structures inference in genome-wide analysis
Nejezchlebová, Julie ; Jurečková, Kateřina (referee) ; Schwarzerová, Jana (advisor)
The bachelor thesis is devoted to the problem of derivation of operon structures and creation of a software tool that allows prediction of operon structures. The tool both predicts operons based on gene expression information, but also refines already predicted operons with gene expression information. The tool is tested on the bacteria Escherichia coli BW25113 and Clostridium beijerinckii NRRL B-598. The theoretical part is devoted to description of operon structure and function, genome sequencing, transcriptome analysis, Clostridium beijerinckii NRRL B-598, Escherichia coli BW25113 and already available online tools for inferring operon structures. In the practical part of the thesis, the pre-processing of raw transcriptomic data to obtain a suitable format for the prediction of operon structures, testing of online tools and the actual implementation of the tool itself are discussed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.