National Repository of Grey Literature 220 records found  beginprevious41 - 50nextend  jump to record: Search took 0.01 seconds. 
Numerical simulation of video-kymographic records of the vocal fold vibration
Vampola, T. ; Horáček, Jaromír
The reconstruction of the video-kymographic records from the numerical simulation of the vocal fold vibration is used for prediction of the type of vocal fold damaged. Three-dimensional (3D) finite element (FE) fully parametric model of the human larynx was developed and used for numerical simulation of stresses during vibrating vocal folds with collisions. The complex model consists of the vocal folds, arytenoids, thyroid and cricoid cartilages. The vocal fold tissue is modeled as a three layered transversal isotropic material. The results of numerical simulation of the vocal folds oscillations excited by a prescribed intraglottal aerodynamic pressure are presented. The FE contact elements are used for modelling the vocal folds collisions and the stresses in the vocal fold tissue are computed in time domain. The damaged of the ligament tissue is simulated by the modification of the modulus of elasticity. The video-kymographic records are reconstructed for health and damaged vocal folds. The results show significant dynamic stresses in all there directions (horizontal, vertical and anterior-posterior).
Numerical simulation of videokymographic images from the results of the finite element model
Švancara, P. ; Horáček, Jaromír ; Martínek, T. ; Švec, J. G.
The study presents a two-dimensional (2D) finite element (FE) model of the fluid-structure-acoustic interaction during flow induced self-oscillation of the human vocal folds. The FE model combines the FE models of the vocal folds, the trachea and the simplified human vocal tract shaped for phonation of vowel [a:]. The fluid-structure interaction is solved using explicit coupling scheme with separated solvers for structure and fluid domain. The developed FE model comprises large deformations of the vocal-fold tissue, vocal-fold contact, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), solution of unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. The effect of lamina propria thickness and material properties on simulated videokymographic (VKG) images of vocal-fold vibrations are analyzed. Such variation of the lamina propria properties can be caused by certain vocal-fold pathologies such as Reinke's edema. The developed FE model can be used to study relations among pathological changes in vocal folds tissue, the resulting VKG images and the produced sound spectra.
Measurement of vibration, flow and acoustic characteristics of a human larynx replica
Horáček, Jaromír ; Bula, Vítězslav ; Radolf, Vojtěch ; Vampola, T. ; Dušková, Miroslava
The study presents results of in vitro measurements of voicing performed on the developed artificial larynx based on the CT images of human larynx taken during phonation. The measured phonation characteristics are in good agreement with the values found in human larynges. The knowledge of these characteristics for the vocal folds replica can be useful for experimental verification of developed sophisticated 3D computational finite element models of phonation due to relatively exactly defined input material and geometrical parameters, which is problematic to obtain reliably in humans.
Numerical Solution of 3D Airflow in Channel Representing a Vocal Tract
Pořízková, P. ; Kozel, Karel ; Horáček, Jaromír
This study deals with the numerical solution of a 3D compressible flow of a viscous fluid in a channel for low inlet airfloe velocity. the channel is a simplified model of the glottal space in the human vocal tract. The system of Navier-Stokes equations has been used as mathematical model of laminar flow of the compressible viscous fluid in a domain. The numerical solution is implemented using the finite volume method (FVM)and the predictor-corrector MacCormack scheme with artifical viscosity using a grid of quadrilateral cells.
Numerical solution of compressible subsonic flows in 3D channel
Pořízková, P. ; Kozel, K. ; Horáček, Jaromír
The channels shape is a simplified geometry of the glottal space in the human vocal tract. Goal is numerical simulation of flow in the channels which involves attributes of real flow causing acoustic perturbations. The system of Navier-Stokes equations closed with static pressure expression for ideal gas describes the unsteady laminar flow of compressible viscous fluid. The numerical solution is implemented using the finite volume method and the predictor-corrector MacCormack scheme with artificial viscosity using a grid of quadrilateral cells. The unsteady grid of quadrilateral cells is considered in the form of conservation laws using Arbitrary Lagrangian-Eulerian method.
Analytical and numerical approach to the airfoil stability computation
Chládek, Štěpán ; Horáček, Jaromír
The fluid structure interaction (FSI) represents an important task in many applications. This paper deals with interaction of airfoil and fluid flow and compares two possible ways of computation of the stability boundaries of the system. The airfoil has two degrees of freedom represented by translation h(t) and rotation a(t). The flow acts on the airfoil with aerodynamic forces depending on the flow velocity. Two methods for calculation of the critical flow velocity, when the airfoil loses aeroleastic stability, are described.
On mathematical modelling of gust response using the finite element method
Sváček, P. ; Horáček, Jaromír
In this paper the numerical approximation of aeroelastic response to sudden gust is presented. The fully coupled formulation of two dimensional incompressible viscous fluid flow over a flexibly supported structure is used. The flow is modelled with the system of Navier-Stokes equations written in Arbitrary Lagrangian-Eulerian form and coupled with system of ordinary differential equations describing the airfoil vibrations with two degrees of freedom. The Navier-Stokes equations are spatially discretized by the fully stabilized finite element method. The numerical results are shown.
Finite element modelling of sound pressure around the human head during phonation
Švancara, P. ; Tomeček, V. ; Horáček, Jaromír ; Švec, J. G.
The study presents finite element (FE) model of sound propagation through the vocal tract and around the human head during speech production. Similar experimental studies are not easily realisable. The FE model of the acoustic spaces corresponding to the human vocal tract for Czech vowel [a:] and acoustic space around the human head was created from computer tomography (CT) images. Modal and transient analyses (excitation by a short pulse) are used for analysis of resonant characteristics of the FE model. The production of vowel is then simulated using transient analysis of the FE models excited by Liljencrants-Fant’s (LF) glottal signal model. Formant frequencies detected from computed spectra are in good agreement with results of modal analysis and with literature. The results of numerical simulation enable evaluating of the transfer functions between a reference point and any point in the space around the head.
In vivo measurements of air pressure, vocal folds vibration and acoustic characteristics of phonation into a straw and a resonance tube used in vocal exercising.
Radolf, Vojtěch ; Laukkanen, A. M. ; Horáček, Jaromír ; Veselý, Jan ; Liu, D.
The study investigates the differences between three most widely used methods in voice training and therapy: Phonation into a glass resonance tube (1) the outer end in the air, (2) the outer end submerged 2-10 cm below water surface in a bowl (‘water resistance therapy’ with bubbling effect), and (3) phonation into a very thin straw. One female speech trainer served as subject. Acoustic samples, electroglottographic signals and both mean and dynamic airpressures in the mouth cavity were registered for repetitions of [pu:pu], and for phonation into the tubes, while the outer end was randomly shuttered, in order to get an estimate of subglottic pressure. Both phonation threshold and ordinary, most comfortable phonation were recorded.
Experimental investigation of air pressure, acoustic characteristics and vibrations of vocal folds on a complex physical model of phonation in humans.
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Veselý, Jan ; Laukkanen, A. M.
The contribution aims to provide material that can be used in development of more realistic physical as well as theoretical models of voice production. The experimental set-up, methodology and the results of measurement of airflow rate, subglottal, oral and generated acoustic air pressures are presented together with the simultaneously measured flow-induced vibrations of a vocal folds replica, made of soft silicon rubber, and recorded by a high speed camera. The data were measured during a ‘soft’ phonation just above the phonation onset, given by the phonation threshold airflow rate, and during a ‘normal’ phonation for the airflow rate of about three times higher. A model of the human vocal tract in the position for production of vowel [u:] was used and the flow resistance was raised by phonating into a glass resonance tube either in the air or having the other end of the tube submerged under water, and by phonating into a narrow straw. The results for the pressures presented in time and frequency domain are comparable with the physiological ranges and limits measured in humans for ordinary phonation and for production of vocal exercises used in voice therapy.

National Repository of Grey Literature : 220 records found   beginprevious41 - 50nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.