Národní úložiště šedé literatury Nalezeno 52 záznamů.  začátekpředchozí33 - 42další  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Automatizované procedury pro Koherencí řízený holografický mikroskop
Dostál, Zbyněk ; Chmelík, Radim (vedoucí práce)
Koherencí řízený holografický mikroskop (CCHM) a Fluorescenční holografický mikroskop (FHM) byly vyvinuty zejména pro kvantitativní fázové zobrazování a měření dynamiky živých buněk, které obvykle bývá předmětem digitální holografické mikroskopie (DHM). CCHM a FHM v režimu nízké koherence rozšiřují možnosti digitální holografické mikroskopie pro studium živých buněk. Nicméně, výhoda plynoucí z využití nízké koherence je doprovázena zvýšenou citlivostí systému na přesnou justáž. Z tohoto důvodu je zavedení automatické justáže systému nevyhnutelné. V disertační práci je odvozena teorie řízení, je navržen a experimentálně ověřen automatizovaný systém justáže pro oba mikroskopy. Bylo zjištěno, že holografický signál je významnou veličinou pro provádění justážních postupů. Na tomto základě byly odvozeny původní procedury nastavení, které obsahují procesy pro počáteční a pokročilou justáž, jakož i pro dlouhodobé udržení mikroskopu v naladěném stavu. Automatizované procesy byly v obou mikroskopech implementovány pomocí původní sady robotických mechanismů. Všechny v práci popsané postupy byly experimentálně ověřeny na mikroskopech v laboratoři experimentální biofotoniky. Pro FHM byl navíc vyvinut ovládací software, který obsahuje potřebné automatizované procedury.
Digitální metody zpracování trojrozměrného zobrazení v rentgenové tomografii a holografické mikroskopii
Kvasnica, Lukáš ; Číp, Ondřej (oponent) ; Štarha, Pavel (oponent) ; Chmelík, Radim (vedoucí práce)
Disertační práce se zabývá metodami počítačového zpracování obrazových dat v rentgenové mikrotomografii a v digitální holografické mikroskopii. Práce si klade za cíl dosáhnout optimalizací a využitím masivně paralelních grafických karet (GPU -- graphic processing unit) výrazného zrychlení algoritmů jak pro rekonstrukci tomografického zobrazení, tak pro rekonstrukci obrazu v holografické mikroskopii. V oblasti mikrotomografie předkládá práce nové GPU akcelerované implementace filtrované zpětné projekce a filtrace zpětné projekce derivovaných dat. Dále je představena technika normalizace orientace a vyhodnocení 3D tomografických dat. V části týkající se holografické mikroskopie je uveden popis jednotlivých kroků celého zpracování obrazu. Je představena nová původní technika navazování a korekce obrazové fáze poškozené výskytem optických vírů v nenavázané obrazové fázi. Následuje popis rychlé GPU implementace metody kompenzace deformací obrazové fáze a techniky trasování buněk. V závěru je krátce představen program Q-PHASE, který je výsledkem spojení všech algoritmů nezbytných jak pro ovládání, tak rekonstrukci obrazu v holografickém mikroskopu.
Trojrozměrná rekonstrukce obrazu v digitální holografické mikroskopii
Týč, Matěj ; Karásek,, Vítězslav (oponent) ; Martišek, Dalibor (oponent) ; Chmelík, Radim (vedoucí práce)
Tato práce se zabývá tématem 3D obrazové rekonstrukce v holografické mikroskopii, konkrétně technikou numerického přeostřování. Numerické přeostřování umožňuje za určitých podmínek korektně doostřit obraz vzorku, který se při snímání nacházel mimo předmětovou rovinu. Tato metoda byla známa pro případ použití koherentních zdrojů osvětlení. V práci je zobecněna do formy, ve které je použitelná i v zařízeních s obecným nekoherentním (plošným anebo nemonochromatickým) zdrojem osvětlení. Dalším bodem práce je teorie pokročilého zpracování hologramu, která umožňuje získat z jednoho hologramu i údaje o přesnosti naměřených dat, k jejichž získání by bylo třeba postupně sejmout větší množství hologramů. Obě dvě metody jsou úspěšně experimentálně ověřeny.
Koherencí řízený holografický mikroskop nové generace
Slabý, Tomáš ; Novák,, Jiří (oponent) ; Jákl, Petr (oponent) ; Chmelík, Radim (vedoucí práce)
Dizertační práce se zabývá návrhem nové generace koherencí řízeného holografického mikroskopu (CCHM). Mikroskop je založen na mimoosovém holografickém uspořádání využívajícím difrakční mřížku a umožňuje použití časově i prostorově nekoherentního osvětlení. V teoretické části je navrženo nové optické uspořádání a odvozeny podmínky pro jednotlivé parametry mikroskopu a jeho komponent. Také je studován vliv různých zdrojů šumu na citlivost detekce fáze. V další části je popsán návrh laboratorní sestavy mikroskopu a navržen automatizovatelný seřizovací postup. Poslední část práce se zabývá experimentálním ověřením nejdůležitějších optických parametrů laboratorní sestavy mikroskopu. Oproti předchozí generaci CCHM nový návrh využívá objektivy korigované na nekonečnou tubusovou délku a běžné mikroskopové kondenzory, umožňuje zvětšení prostoru pro pozorované vzorky, odstraňuje omezení spektrální propustnosti a značně zjednodušuje seřizovací postup až na automatizovatelnou úroveň.
Koherencí řízená holografická mikroskopie v opticky rozptylujících prostředích
Lošťák, Martin ; Komrska, Jiří (oponent) ; Šerý, Mojmír (oponent) ; Chmelík, Radim (vedoucí práce)
Předkládaná práce se zabývá zobrazováním přes difuzní prostředí v koherencí řízeném holografickém mikroskopu (CCHM) vyvinutém na Ústavu fyzikálního inženýrství v Brně. Je v ní uveden výpočet vzájemné koherence světla v mikroskopu, výpočet signálu v závislosti na vzájemném laterálním posuvu obou větví a vzájemná souvislost obou výsledků. Poslední zmíněný výpočet je navíc podroben ověřovacím experimentům. Pomocí jednoduchého geometrického modelu je zde vysvětlen princip zobrazení v CCHM přes difuzní prostředí balistickým i difuzním světlem a je doplněn příslušnými potvrzujícími experimenty. Na tento model dále navazují teoretické výpočty rozptylové funkce bodu (PSF) pro zobrazení přes difuzní prostředí. Výsledek modelu je potvrzen experimentem.
Trojrozměrná rekonstrukce obrazu v digitální holografické mikroskopii
Týč, Matěj ; Chmelík, Radim (vedoucí práce)
Tato práce se zabývá tématem 3D obrazové rekonstrukce v holografické mikroskopii, konkrétně technikou numerického přeostřování. Numerické přeostřování umožňuje za určitých podmínek korektně doostřit obraz vzorku, který se při snímání nacházel mimo předmětovou rovinu. Tato metoda byla známa pro případ použití koherentních zdrojů osvětlení. V práci je zobecněna do formy, ve které je použitelná i v zařízeních s obecným nekoherentním (plošným anebo nemonochromatickým) zdrojem osvětlení. Dalším bodem práce je teorie pokročilého zpracování hologramu, která umožňuje získat z jednoho hologramu i údaje o přesnosti naměřených dat, k jejichž získání by bylo třeba postupně sejmout větší množství hologramů. Obě dvě metody jsou úspěšně experimentálně ověřeny.
Matematické metody pro zpracování obrazu v biologických pozorováních
Zikmund, Tomáš ; doc. RNDr.Petr Matula, Ph.D. (oponent) ; Krejčí, František (oponent) ; Chmelík, Radim (vedoucí práce)
Dizertační práce se zabývá zpracováním obrazu v digitální holografické mikroskopii a rentgenové počítačové tomografii. Těžiště práce spočívá v návrhu postupů pro zpracování dat v daných oblastech biologických experimentů. Transmisní světelná holografická mikroskopie je použita zejména pro kvantitativní fázové zobrazení transparentních mikroskopických objektů, jako jsou živé buňky. Fázové obrazy jsou ovlivněny fázovými aberacemi, které ztěžují studium buněk. V této práci je prezentován nový algoritmus pro dynamické zpracování fázových obrazů živých buněk v časosběrné sérii. Algoritmus kompenzuje deformace fázového obrazu použitím metody vážených nejmenších čtverců. Navíc ve fázovém obrazu identifikuje a segmentuje individuální buňku. Tyto vlastnosti algoritmu jsou rozhodující pro kvantitativní fázové zobrazení buněk v reálném čase a řízení průběhu experimentu. Účinnost navrženého algoritmu je demonstrována na obrazech krysích nádorových buněk prostřednictvím mimoosového holografického mikroskopu. Rentgenová počítačová tomografie s vysokým rozlišením je stále více používanou technikou pro studium mikroarchitektury kostí malých hlodavců. V této části práce je provedena analýza kortikální a trabekulární distální poloviny krysích stehenních kostí. Vyvinuli jsme metodu pro mapování pozice a rozměrů kortikálních povrchů od centrální podélné osy s jednostupňovým úhlovým rozlišením. Touto metodou jsou zkoumány tvarové odlišnosti krysích stehenních kostí mezi experimentálními skupinami. Orientace kostí je v tomografických řezech vyrovnána před mapováním pomocí navrženého postupu standardizace tomografických dat. Aktivita remodelačního procesu dlouhé kosti je také studována na systému kortikálních kanálků.
Koherencí řízený holografický mikroskop
Kolman, Pavel ; Křupka, Ivan (oponent) ; Kozubek, Michal (oponent) ; Chmelík, Radim (vedoucí práce)
Byl navržen, zkonstruován a ověřen koherencí řízený transmisní holografický mikroskop (CCHM) s mimoosovým achromatickým a prostorově invariantním interferometrem s difrakčním děličem svazku. Tento interferometr umožňuje zobrazení světlem plošného, časově i prostorově nekoherentního zdroje. Mimoosové holografické zobrazení předmětu je zaznamenáno a numericky je fourierovskými metodami rekonstruována komplexní amplituda předmětové vlny, tedy její intenzita a fáze. Fázové zobrazení představuje rozdíl optických drah mezi předmětovou a referenční větví způsobený vloženým předmětem. Jde tedy o kvantitativní fázový kontrast. Intenzitní zobrazení je při osvětlení prostorově nekoherentním zdrojem ekvivalentní zobrazení rastrovacím konfokálním mikroskopem. Lze tedy zobrazovat předměty překryté rozptylující vrstvou nebo vnořené v rozptylujícím prostředí. Při současném použití prostorově a časově nekoherentního osvětlení jsou optické řezy tenčí než v případě konfokálního mikroskopu. K rekonstrukci zobrazení stačí jediný snímek hologramu, což zaručuje vysokou odolnost systému vůči rychlým změnám podmínek pozorování, zejména turbulencím okolního prostředí. Frekvence snímkování není omezena žádnou částí optické soustavy. Je omezena pouze rychlostí záznamového zařízení. Je tedy možné pozorování velmi rychlých dějů. V rámci koherenčního objemu lze mikroskop ex post numericky přeostřovat. Stupeň koherence osvětlení lze přizpůsobit charakteru vzorku a požadovaným vlastnostem zobrazení. Vyšší stupeň koherence osvětlení poskytuje možnost numerického přeostřování v osově rozsáhlejší oblasti. Omezení koherence tuto oblast zužuje a současně ztenčuje optický řez, potlačuje koherenční šum a umožňuje zobrazení pouze balistickým světlem. Kromě separace balistického světla umožňuje CCHM separovat také světlo difúzní. Paralelní holografický záznam obrazu v mnoha barvách v jediném okamžiku umožňuje v některých případech překonat destruktivní interferenci světla ve vzorku na některé vlnové délce a zachovat tím fázovou informaci z tohoto pozorovaného místa. Příčná rozlišovací schopnost odpovídá nekoherentnímu zobrazovacímu procesu a je dvojnásobná oproti rozlišovací schopnosti při koherentním osvětlení. Je popsáno optické uspořádání mikroskopu a jsou uvedeny podmínky, jejichž splněním se dosáhne achromatičnosti interferometru. Na základě zvolené metody rekonstrukce komplexní amplitudy zobrazení a na základě analýzy spektra prostorových frekvencí hologramu ve výstupní rovině interferometru je odvozena jedna z podmínek pro stanovení hustoty vrypů difrakčního děliče svazku. Je určena účinná spektrální propustnost mikroskopu, je pojednáno o vlivu vyšších difrakčních řádů na výsledné holografické zobrazení a o vlivu velikosti plošného zdroje na kontrast interferenčních proužků hologramu. Dále jsou odvozeny podmínky pro zvětšení a numerickou aperturu výstupního objektivu, je určena velikost zorného pole a ta je porovnána s běžným světelným mikroskopem. Součástí práce je výrobní výkresová dokumentace mikroskopu. Podrobně je popsán způsob nastavení všech optických prvků mikroskopu, a to jak v průběhu montáže, tak při běžném provozu při výměně objektivů. Na zobrazení modelových vzorků jsou demonstrovány a diskutovány vlastnosti holografického zobrazení.
Mikroskopie časově proměnných biologických objektů
Uhlířová, Hana ; Kozubek, Michal (oponent) ; Peychl,, Jan (oponent) ; Chmelík, Radim (vedoucí práce)
Předmětem disertační práce je využití transmisního digitálního holografického mikroskopu (DHM) navrženého a zkonstruovaného v Laboratoři optické mikroskopie na ÚFI VUT v Brně pro výzkum dynamiky živých buněk. První část práce se zabývá teoretickým popisem vlastností zobrazení mikroskopu v závislosti na koherenci osvětlení doplněným experimenty s modelovým a reálným biologickým vzorkem. V další části jsou popsány konstrukční změny a inovace mikroskopu a jeho vybavení, které umožnily využívání mikroskopu pro pozorování živých buněk. V~experimentální části byla vypracována metodika přípravy a pozorování živých buněk pro DHM, která byla ověřena při zobrazení dynamiky buněčné apoptózy indukované cytostatikem cis-platinou. Byla zkoumána také dynamika živých buněk při standardních podmínkách a za působení deprivačního stimulu. Pro vyhodnocení kvantitativních změn rozmístění buněčné hmoty během experimentů byla vytvořena metoda zpracování holograficky rekonstruované fáze nazvaná "dynamické fázové diference". Touto metodou byly odhaleny různé vzorce chování rakovinových buněk během specifické reakce v závislosti na typu buněk, stupni jejich malignity a hustotě porostu. Pro kvantitativní analýzu fázového zobrazení z DHM byla navržena vhodná statistická charakteristika a způsob interpretace naměřených dat, které byly úspěšně aplikovány při porovnání vnitrobuněčného pohybu dvou typů rakovinových buněk rodičovské a dceřiné linie. Na základě uvedeného zpracování pozorování byly stanoveny hypotézy o mechanismu reakce nádorových buněk na nepříznivé životní podmínky.

Národní úložiště šedé literatury : Nalezeno 52 záznamů.   začátekpředchozí33 - 42další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.