National Repository of Grey Literature 36 records found  beginprevious31 - 36  jump to record: Search took 0.00 seconds. 
Complex I of mitochondrial respiratory chain a its disorders.
Rodinová, Marie ; Kalous, Martin (referee) ; Hansíková, Hana (advisor)
NADH: ubiquinone oxidoreductase (Complex I) is a multisubunit protein complex of inner mitochondrial membrane. Complex I is the biggest and most complicated part of oxidative phosphorylation system, which is responsible for the cell ATP production. It consists of 45 subunits. 7 subunits are mitochondrial encoded, remainder 38 are nuclear encoded. NADH: ubiquinone oxidoreductase has L-shaped structure, which is built of two arms: membrane arm and matrix located peripheral arm. Complex I oxidize the NADH molecule. The electron transport is coupled with proton pumping across the inner mitochondrial membrane to intermembrane space, where proton gradient developed and which is used by ATP synthase to ATP synthesis. Deficiencies of NADH: ubiquinone oxidoreductase represent extensive, clinically and genetic heterogeneous group of mitochondrial diseases. Decrease of activity and amount of complex I, decrease of ATP production, changes of membrane potential, mitochondrial morphology and mitochondrial network and increasing of production of reactive oxygen species are found in cells with defects of NADH: ubiquinone oxidoreductase. Combination of this features lead to serious illnesses, which are almost fatal and we still haven't any useful therapy. Aim of this study is to summarize present knowledge about...
Study of mitochondrial ultrastructure and functions in selected mitochondrial and lysosomal storage disorders
Kostková, Olga ; Hansíková, Hana (advisor) ; Šmíd, František (referee) ; Hyánek, Josef (referee)
This thesis has been worked out in The laboratory for study of mitochondrial disorders (Departement of Pediatrics, 1st Faculty of Medcine, Chales university in Prague) and in cooperation with The Institute of Inherited Metabolic Disorders. Mitochondrial disorders represent a heterogeneous group of diseases with the onset at any age from neonatal period till adulthood, mostly presented with very severe clinical courses of disease. The mammalian organism is fully dependent on mitochondrial oxidative phosphorylation system as on the major energy producer of the cell. Therefore the mitochondrial disorders affect mainly high energy demanded tissues such as brain, heart or muscle. Simillar phenotype is observed in many lysosomal storage disorders. Despite of expanding knowledge of molecular basis of mitochondrial and lysosomal disorders, it may be still difficult to explain the exact pathogenesis of disease as well as the prognosis for patients and their families. Mitochondrial functions affect more than just energy production; they contribute in initiation of apoptosis, in cellular calcium homeostasis, and in production of reactive oxygene species. Disturbed mitochondria become a goal of autophagy mediated by the lysosomal compartement. The results of our study enable: 1. better understanding of the tissue...
The study of activation and detoxication metabolism of the anticancer drug ellipticine by the cytochrome P450 system in vitro and in vivo…
Kotrbová, Věra ; Stiborová, Marie (advisor) ; Hansíková, Hana (referee) ; Souček, Pavel (referee)
Gen. Physiol. Biophys. (2006), 25, 245-261 245 Oxidation Pattern of the Anticancer Drug Ellipticine by Hepatic Microsomes - Similarity Between Human and Rat Systems M. Stiborová1 , L. Bořek-Dohalská1 , D. Aimová1 , V. Kotrbová1 , K. Kukačková1 , K. Janouchová1 , M. Rupertová1 , H. Ryšlavá1 , J. Hudeček1 and E. Frei2 1 Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic 2 Division of Molecular Toxicology, German Cancer Research Center, Heidelberg, Germany Abstract. Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of DNA adducts mediated by cytochrome P450 (CYP). We investigated the ability of CYP enzymes in rat, rabbit and human hepatic microsomes to oxidize ellip- ticine and evaluated suitable animal models mimicking its oxidation in humans. Ellipticine is oxidized by microsomes of all species to 7-hydroxy-, 9-hydroxy-, 12- hydroxy-, 13-hydroxyellipticine and ellipticine N2 -oxide. However, only rat micro- somes generated the pattern of ellipticine metabolites reproducing that formed by human microsomes. While rabbit microsomes favored the production of ellipticine N2 -oxide, human and rat microsomes predominantly formed 13-hydroxyellipticine. The species difference in...

National Repository of Grey Literature : 36 records found   beginprevious31 - 36  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.