Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Dynamic model of nonlinear oscillator with piezoelectric layer
Sosna, Petr ; Lošák, Petr (oponent) ; Hadaš, Zdeněk (vedoucí práce)
This diploma thesis aims to analyze the behavior of a nonlinear magnetopiezoelastic vibrating beam. First, a~single-degree-of-freedom model of a real-world nonlinear energy harvester is developed. Numerical simulations of magnetic interaction provide a~basis for the mentioned stiffness nonlinearity. Qualitative and quantitative analyses of how the frequency response of such a~ system is affected by load resistance, amplitude of harmonic base excitation, and magnet separation distance are performed. Magnet separation distance acts as the main parameter that affects the level of nonlinearity and type of behavior. Therefore a significant portion of the work is dedicated to bifurcation diagrams, where the behavior and performance of the harvester are analyzed as a~function of magnet separation distance. These bifurcation diagrams also lead to performance maps, that could form the basis for efficient real-time tuning of the energy harvester. Important phenomena that can influence the harvested energy, when the system is excited by non-harmonic force, are also present. These include force impulses or noise-induced basin hopping.
Dynamic model of nonlinear oscillator with piezoelectric layer
Sosna, Petr ; Lošák, Petr (oponent) ; Hadaš, Zdeněk (vedoucí práce)
This diploma thesis aims to analyze the behavior of a nonlinear magnetopiezoelastic vibrating beam. First, a~single-degree-of-freedom model of a real-world nonlinear energy harvester is developed. Numerical simulations of magnetic interaction provide a~basis for the mentioned stiffness nonlinearity. Qualitative and quantitative analyses of how the frequency response of such a~ system is affected by load resistance, amplitude of harmonic base excitation, and magnet separation distance are performed. Magnet separation distance acts as the main parameter that affects the level of nonlinearity and type of behavior. Therefore a significant portion of the work is dedicated to bifurcation diagrams, where the behavior and performance of the harvester are analyzed as a~function of magnet separation distance. These bifurcation diagrams also lead to performance maps, that could form the basis for efficient real-time tuning of the energy harvester. Important phenomena that can influence the harvested energy, when the system is excited by non-harmonic force, are also present. These include force impulses or noise-induced basin hopping.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.