National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Spontaneous calcium permeability of ionic channel of P2X receptor after substitution ofconserved tyrosine in the 1st transmembrae domajn
Rupert, Marian ; Zemková, Hana (advisor) ; Balík, Aleš (referee)
Purinergic receptors are membrane ion channels that are activated by extracellular ATP. In vertebrates, seven genes encode subunits of P2X receptors. The subunits, designated P2X1-7, are 40 - 50% identical in amino acid sequences. P2X receptors are composed of three subunits and are found as homo- and heterotrimers in tissues of vertebrates. P2X receptors have a wide distribution in the organism, functional receptors are found in neurons, glial cells, muscle cells and also in nonexcitable tissues as epithelial, endothelial, and in hemopoietic tissue. Purinergic signalling plays an important role in pain transmission, at CNS injury and immune processes. P2X receptor subunit consists of two transmembrane domains, extracellular domain and intracellular N-and C-termini. Each transmembrane domain contains two amino acids conserved across all P2X subunits. In the first transmembrane domain receptor P2X2 are that Gly30 and Tyr43. In previous experiments performed on P2X2 receptor, electrophysiological measurements demonstrated that substitution of conserved Tyr43 in the first transmembrane domain with alanine prolongs the deactivation time of ion channel after agonist wash out. This work is focused on clarifying the role of conserved tyrosine in the process of opening and closing of ion channel of P2X...
Trafficking of purinergic P2X receptor in eukaryotic cell
Pražák, Šimon ; Tvrdoňová, Vendula (advisor) ; Kolář, David (referee)
Purinergic receptors are membrane ion channels activated by extracellular ATP. In vertebrates, seven genes encoding P2X subunits was found. These subunits are designated as P2X1 - 7. Every P2X receptor subunit consists of two transmembrane domains, extracellular domain and intracellular N- and C- termini. P2X receptors fold to homo- or heterotrimers. P2X receptors have a wide distribution in the organism, functional receptors are found in neurons, glial cells, muscle cells and also in nonexcitable tissues as epithelial, endothelial, and in hemopoietic tissue. Purinergic signalling plays an important role in pain transmission, CNS injury and immune processes. P2X receptors are synthesized on the rough endoplasmic reticulum and are transported to the plasma membrane after post-translational modifications in the Golgi apparatus. The distribution and transport of P2X receptors is subunit specific and dependent on the cell type in which they are expressed. P2X receptors can be divided into three groups according to the way they are moved in the cell, which differ in transport speed, plasma membrane accumulation rate and rate of internalization.
Spontaneous calcium permeability of ionic channel of P2X receptor after substitution ofconserved tyrosine in the 1st transmembrae domajn
Rupert, Marian ; Zemková, Hana (advisor) ; Balík, Aleš (referee)
Purinergic receptors are membrane ion channels that are activated by extracellular ATP. In vertebrates, seven genes encode subunits of P2X receptors. The subunits, designated P2X1-7, are 40 - 50% identical in amino acid sequences. P2X receptors are composed of three subunits and are found as homo- and heterotrimers in tissues of vertebrates. P2X receptors have a wide distribution in the organism, functional receptors are found in neurons, glial cells, muscle cells and also in nonexcitable tissues as epithelial, endothelial, and in hemopoietic tissue. Purinergic signalling plays an important role in pain transmission, at CNS injury and immune processes. P2X receptor subunit consists of two transmembrane domains, extracellular domain and intracellular N-and C-termini. Each transmembrane domain contains two amino acids conserved across all P2X subunits. In the first transmembrane domain receptor P2X2 are that Gly30 and Tyr43. In previous experiments performed on P2X2 receptor, electrophysiological measurements demonstrated that substitution of conserved Tyr43 in the first transmembrane domain with alanine prolongs the deactivation time of ion channel after agonist wash out. This work is focused on clarifying the role of conserved tyrosine in the process of opening and closing of ion channel of P2X...
On the role of the first transmembrane domain in desensitization kinetics of the P2X4 receptor.
Kalasová, Ilona ; Zemková, Hana (advisor) ; Krůšek, Jan (referee)
Extracellular adenosin-5'-triphosphate (ATP) is an important signalling molecule. Cells of eukaryotic tissues release ATP and express responding purinergic receptors. Ionotropic P2X receptors are trimeric ion channels permeable for K+, Na+ and Ca2+ ions. Each subunit consists of two transmembrane domains (TM1 and TM2), an extracellular loop and intracellular N- and C- termini. The transmembrane region is formed by six helical domains. According to the known crystal structure of zfP2X4 receptor, TM1 helixes are oriented peripherally and stabilize TM2 helixes which form the ion gate. However, eletrophysiological studies revealed that TM1 might also participate in channel gating and forming of the ion pore in the open state. The aim of this work was to investigate the role of TM1 in the process of desensitization of rat P2X4 receptor using cystein-scanning mutagenesis. Mutation of two residues (in Asn32 and Tyr42) prolonged desensitization of P2X4 receptor. Moreover, experiments with a partial agonist α,β-methylenadenosin-5'-triphosphate (αβ-meATP) proved that conformation change of TM domains in the process of desensitization is independent on conformation change caused by an agonist binding. Conserved residue Tyr42 is located in the proximity of TM2 of neighbouring subunit. It probably interacts with Met336...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.