National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
Experimental electroerosion machining of special materials for aerospace industry
Líkař, Martin ; Mouralová, Kateřina (referee) ; Kalivoda, Milan (advisor)
This master´s thesis deals with the issues of electroerosive machining material used in aerospace industry. The master´s thesis is divided into the theoretical and practical part. In the theoretical part is described electroerosive machining with a focus on electrical discharge sinking. One section of the theoretical part is an analysis of materials used in the aerospace industry. The practical part of the master´s thesis is focused on electrical discharge sinking of aerospace material INCO 713LC, here is investigated the influence of machining parameters on the surface of the workpiece and tool.
Design of a suitable shape of test bars used for HCF (high cycle fatigue) and LCF (low cycle fatigue) and elimination of internal defects for reduction of their influence
Hemala, Robert ; Šustek, Petr (referee) ; Ňuksa, Petr (advisor)
The topic of this thesis is the formation of microporosity in cast test bars of nickel-base superalloy Inconel 713LC during solidification. The theoretical part consists of nickel alloys, their macrostructure, the method of casting and crystallization of nickel-based superalloys. The second part is devoted to the design of casting conditions, the production of shell molds, the size and shape of grains, evaluation of microporosity by various available methods, comparing the influence of grain size and the proportion of microporosity on the resulting values of the mechanical tests. Experiments were carried out in cooperation with PBS Velká Bíteš and ÚST foundry department.
Development of SLM process parameters for thin-walled nickel superalloy components
Kafka, Richard ; Dočekalová, Kateřina (referee) ; Koutný, Daniel (advisor)
The diploma thesis deals with the development of process parameters of SLM technology for the material IN718. The main goal is an experimental development of a set of parameters for the production of thin-walled parts with regard to material density, surface roughness and tightness. The essence of the development of parameters is an experimental explanation of the influence of laser power and scanning speed on the morphology of single tracks, which are used for the production of a thin wall. Together with walls of larger widths and volume samples, it is possible to create an intersection of parameters by which is possible to create components formed by a combination of thin-walled and volume geometry. The performed research created a material set, where the parameters of thin walls are used for the area of contours of bulk samples. We managed to produce a wall with an average width of 0.15 mm and roughness of 6 m, which meets the requirement for the tightness. The meander scanning pattern achieved a relative material density of 99.92%, which is more than with the supplier's parameters. Based on the acquired knowledge, it was possible to apply a set of parameters to components combining both geometries.
Fatigue failure mechanism of nickel-based superalloy Inconel 713LC under 800°C
Smékalová, Jana ; Juliš, Martin (referee) ; Hutařová, Simona (advisor)
Nickel superalloys are used for high-temperature application in energetic and aerospace industry. They are exposed to aggressive environment at high temperatures with the interactions between fatigue and creep processes, high-temperature oxidation, corrosion and erosion. Lifetime extension of such strained parts while increasing the performance of particular machine is possible by applying protective surface coatings. The subject of this work is to investigate the fatigue failure mechanisms of superalloy Inconel 713LC at 800 °C and to compare these mechanisms between material with a protective coating based on Al-Si and material without coating. The location of initiation fatigue cracks, their propagation and the fatigue crack propagation rate in some areas were analyzed by optical microscopy, scanning electron microscopy and confocal laser scanning microscopy. Based on previous research it was found that the application of the coating AlSi has a positive effect on lifetime of alloy Inconel 713LC. These results were confirmed and estimated in the diploma thesis.
Development of SLM process parameters for thin-walled nickel superalloy components
Kafka, Richard ; Dočekalová, Kateřina (referee) ; Koutný, Daniel (advisor)
The diploma thesis deals with the development of process parameters of SLM technology for the material IN718. The main goal is an experimental development of a set of parameters for the production of thin-walled parts with regard to material density, surface roughness and tightness. The essence of the development of parameters is an experimental explanation of the influence of laser power and scanning speed on the morphology of single tracks, which are used for the production of a thin wall. Together with walls of larger widths and volume samples, it is possible to create an intersection of parameters by which is possible to create components formed by a combination of thin-walled and volume geometry. The performed research created a material set, where the parameters of thin walls are used for the area of contours of bulk samples. We managed to produce a wall with an average width of 0.15 mm and roughness of 6 m, which meets the requirement for the tightness. The meander scanning pattern achieved a relative material density of 99.92%, which is more than with the supplier's parameters. Based on the acquired knowledge, it was possible to apply a set of parameters to components combining both geometries.
Experimental electroerosion machining of special materials for aerospace industry
Líkař, Martin ; Mouralová, Kateřina (referee) ; Kalivoda, Milan (advisor)
This master´s thesis deals with the issues of electroerosive machining material used in aerospace industry. The master´s thesis is divided into the theoretical and practical part. In the theoretical part is described electroerosive machining with a focus on electrical discharge sinking. One section of the theoretical part is an analysis of materials used in the aerospace industry. The practical part of the master´s thesis is focused on electrical discharge sinking of aerospace material INCO 713LC, here is investigated the influence of machining parameters on the surface of the workpiece and tool.
Design of a suitable shape of test bars used for HCF (high cycle fatigue) and LCF (low cycle fatigue) and elimination of internal defects for reduction of their influence
Hemala, Robert ; Šustek, Petr (referee) ; Ňuksa, Petr (advisor)
The topic of this thesis is the formation of microporosity in cast test bars of nickel-base superalloy Inconel 713LC during solidification. The theoretical part consists of nickel alloys, their macrostructure, the method of casting and crystallization of nickel-based superalloys. The second part is devoted to the design of casting conditions, the production of shell molds, the size and shape of grains, evaluation of microporosity by various available methods, comparing the influence of grain size and the proportion of microporosity on the resulting values of the mechanical tests. Experiments were carried out in cooperation with PBS Velká Bíteš and ÚST foundry department.
Fatigue failure mechanism of nickel-based superalloy Inconel 713LC under 800°C
Smékalová, Jana ; Juliš, Martin (referee) ; Hutařová, Simona (advisor)
Nickel superalloys are used for high-temperature application in energetic and aerospace industry. They are exposed to aggressive environment at high temperatures with the interactions between fatigue and creep processes, high-temperature oxidation, corrosion and erosion. Lifetime extension of such strained parts while increasing the performance of particular machine is possible by applying protective surface coatings. The subject of this work is to investigate the fatigue failure mechanisms of superalloy Inconel 713LC at 800 °C and to compare these mechanisms between material with a protective coating based on Al-Si and material without coating. The location of initiation fatigue cracks, their propagation and the fatigue crack propagation rate in some areas were analyzed by optical microscopy, scanning electron microscopy and confocal laser scanning microscopy. Based on previous research it was found that the application of the coating AlSi has a positive effect on lifetime of alloy Inconel 713LC. These results were confirmed and estimated in the diploma thesis.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.