National Repository of Grey Literature 62 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
Deposition of Nanocomposite Thin Films
Kratochvíl, Jiří ; Kylián, Ondřej (advisor) ; Straňák, Vítězslav (referee)
Nanocomposite thin films can find application in photovoltaics, optics, fabrication of sensors, or in biomedicine. This work investigates fabrication and characterization of thin metal-plasma polymer nanocomposite films which have direct application because of their unique optical properties (e.g. SERS - Surface-Enhanced Raman Spectroscopy) or antibacterial effects (biomedicine). We fabricated metal nanoparticles either by magnetron sputtering (island growth) or by means of gas aggregation source of nanoparticles, thereby we got nanoparticles with very different morphologies. We used silver as a material for nanoparticles because of its antibacterial effects. We incorporated these nanoparticles into sputtered Nylon and sputtered PTFE (polytetrafluoroethylene) plasma polymer matrix. These two polymers have very different chemical structure and related different surface energy. First, we compared growth of nanoparticles on substrates of sputtered Nylon and PTFE. Then we compared properties of sandwich nanocomposites polymer-Ag-polymer for both types of nanoparticles and for both matrix materials. We characterized produced thin films especially with respect to their stability in water (antibacterial films), thermal stability (sterilization by heating) and stability on the open air (storage). Finally, the tests...
Electron microscopy study of nanostructured thin film catalysts for micro-fuel cell application
Lavková, Jaroslava ; Matolínová, Iva (advisor) ; Ruterana, Pierre (referee) ; Šubrt, Jan (referee)
Present doctoral thesis is focused on electron microscopy and spectroscopy investigation of novel metal-oxide anode catalyst for fuel cell application. Catalyst based on Pt- doped cerium oxide in form of thin layers prepared by simultaneous magnetron sputtering deposition on intermediate carbonaceous films grown on silicon substrate has been studied. The influence of catalyst support composition (a-C and CNx films), deposition time of CeOx layer and other deposition parameters, as deposition rate, composition of working atmosphere and Pt concentration on the morphology of Pt-CeOx layers has been investigated mainly by Transmission Electron Microscopy (TEM). The obtained results have shown that by suitable preparation conditions combination we are able to tune final morphology and composition of catalyst. Composition of carbonaceous films and Pt-CeOx layers was examined by complementary spectroscopy techniques - Energy Dispersive X-ray Spectroscopy (EDX), Electron Energy Loss Spectroscopy (EELS) and X-ray Photoelectron Spectroscopy (XPS). Such prepared porous structures of Pt-CeOx are of promising as anode catalytic material for real fuel cell application. Keywords: cerium oxide, platinum, fuel cell, magnetron sputtering, Transmission Electron Microscopy
Ultrathin films deposited by means of magnetron sputtering and their characterization
Petr, Martin ; Kylián, Ondřej (advisor) ; Straňák, Vítězslav (referee) ; Tichý, Milan (referee)
Presented work is focused on the deposition and characterization of thin and ultrathin plasma polymer films, then also on the preparation of nanocomposites metal/plasma polymer. The characterization of plasma polymer films was partly done in-situ without exposing the samples to the atmosphere. The thickness of prepared films was measured by spectral ellipsometry, the chemical composition was measured by XPS. The morphology and optical properties of deposited films were measured ex-situ. It is shown that during the initial stages of growth the properties of plasma polymer films depend on their thickness and also on the material of the substrate. Many interesting applications were explored for prepared nanocomposites metal/plasma polymer. They can be used as superhydrophobic coatings, gradient coatings, substrates for Raman spectroscopy or as antibacterial coatings. Moreover, special optical properties of prepared nanocomposites were studied in detail. Presented work has an experimental character.
Studium defektů v tenkých kovových vrstvách
Hruška, Petr ; Čížek, Jakub (advisor) ; Bulíř, Jiří (referee)
In the present work Mg films prepared by RF magnetron sputtering were studied. Variable energy positron annihilation spectroscopy (VEPAS) was employed for investigation of defects in the Mg films. VEPAS characterization was combined with scanning electron microscopy and X-ray diffraction in order to determine grain size, phase composition and texture. The effect of different deposition rate and deposition temperature, annealing, various substrates and film thickness on the structure and amount of defects present in the Mg films was examined. Defect studies by VEPAS showed that positrons in studied Mg films are trapped at misfit dislocations and at vacancy-like defects in grain boundaries and their density can be reduced by the deposition at elevated temperature. 1
Characterization of highly porous Pd-modified SnO2 sputtered thin films for H2 detection
Chundak, Mykhailo ; Veltruská, Kateřina (advisor) ; Jiříček, Petr (referee) ; Šmíd, Břetislav (referee)
Title: Characterization of highly porous Pd-modified SnO2 sputtered thin films for H2 detection Autor: Mgr. Mykhailo Chundak Department/Institute: Department of Surface and Plasma Science Supervisor of the doctoral thesis: RNDr. Kateřina Veltruská, CSc., Department of Surface and Plasma Science Abstract: This doctoral thesis contains the study of tin dioxide and Pd-doped tin dioxide samples deposited by magnetron sputtering utilizing glancing angle deposition (GLAD). Influence of the deposition parameters on the change of morphology, crystalline structure and chemical state was studied. The samples were characterized by a variety of techniques, such as: X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), synchrotron radiation photoelectron spectroscopy (SRPES), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Prepared samples showed high porosity which could be controlled by deposition parameters (angle of the deposition, gas pressure and power of magnetron discharge). Highly porous SnO2 GLAD samples and Pd modified SnO2 GLAD samples were deposited on the substrates at room temperature and 300 řC. These samples were found to be polycrystalline with certain fraction of amorphous contribution, given by preparation conditions. The size of the...
Study of thin film catalysts for direct methanol fuel cell anode
Fusek, Lukáš ; Matolín, Vladimír (advisor) ; Nováková, Jaroslava (referee)
This thesis is focused on the study of catalyst layers for direct methanol fuel cell anode prepared by a new method using magnetron sputtering. Homemade as well as commercial supports were used. The study of properties of prepared layers was carried out in fuel cell using methods of electrochemical analysis, such as electrochemical impedance spectroscopy and cyclic voltametry for examination of conductivity, catalyst activity and resistance to poisoning by residual carbon species. Polarization curves were used to investigate power and diffusion properties. A reference cell composed of commercially-available electrodes was chosen for comparison.
Controllable synthesis, treatment and characterization of anodes for Direct Formic Acid Fuell Cell
Bieloshapka, Igor ; Jiříček, Petr (advisor) ; Khalakhan, Ivan (referee) ; Plšek, Jan (referee)
Title: Controllable synthesis, treatment, and characterization of anodes for Direct Formic Acid Fuel Cell Author: Igor Bieloshapka Department: Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University Supervisor of the doctoral thesis: Ing. Petr Jiříček, CSc., Institute of Physics of the Czech Academy of Sciences, Division of Solid State Physics, Department of Optical Materials Abstract: This doctoral thesis concerns the preparation of anodes with Pd-based catalysts. Anodes were deposited on a support surface with magnetron sputtering. The prepared samples were tested in a direct formic acid fuel cell (DFAFC) station. Polyaniline, graphene oxide (GO) and reduced graphene oxide (RGO) have been additionally investigated as promising support material for polymer membrane fuel cells (FCs). A scanning electron microscope (SEM) and a transmission electron microscope (TEM) were used to observe the morphological differences between the prepared samples. Elemental composition and chemical states on the anode part were studied through X-ray photoelectron spectroscopy (XPS). The results show that the power density of the prepared anodes with 3 nm of palladium thickness is lower only by 30% in comparison with chemically prepared catalysts. The highest power density results were achieved for the...
Biomedical applications of polycaprolactone nanofibrous mats
Dvořák, Pavel ; Přibyl,, Jan (referee) ; Zajíčková, Lenka (advisor)
The diploma thesis deals with the treatment of polycaprolactone (PCL) nanofibers. PCL fibers were subjected to the deposition of plasma amine polymers in a low pressure pulsed radiofrequency capacitively coupled discharge using cyclopropylamine monomer (CPA). Collagen as an extracellular matrix (ECM) protein was immobilized and cell proliferation on the modified nanofiber surface was monitored. Untreated PCL fibers were also subjected to the deposition of an antibacterial copper layer, and the fibers were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDX).
Deposition and analysis of AlCrN coatings
Drásalová, Kateřina ; Juliš, Martin (referee) ; Klakurková, Lenka (advisor)
The topic of this thesis is the deposition process and methods of quality assessment of AlCrN surface coatings produced by methods of (i) magnetron sputtering, (ii) magnetron sputtering with arc enhanced glow discharge, and (iii) high power magnetron sputtering with the movable magnetic field. The main focus is placed on categorizing properties of the produced coatings based on the production method (which vary in the ionization level). Qualities of the surface coatings are assessed by adhesion and cohesion parameters testing of coarseness using AFM (Atomic Force Microscopy), depth measuring using a calotest, measuring internal tension using the Bent Strip Method and Instrumented indentation test for hardness.

National Repository of Grey Literature : 62 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.