National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Investigation of effects of femtosecond laser pulses on spintronic structures
Farkaš, Andrej ; Olejník, Kamil (advisor)
This thesis is focused on a detailed investigation of the optically induced quench switching effect in different films of antiferromagnetic CuMnAs. The quench switching effect was recently discovered to be highly reproducible resistance switch- ing, which can be excited by electrical and optical laser pulses. This thesis com- pares the amplitude response to laser-induced quench switching for samples on the different substrate material, samples with different stoichiometries, and sam- ples with different thicknesses of CuMnAs film. The effects of different ratios between the laser spot and the size of the measured device are investigated, and position-dependent measurements are also presented. It is shown that resistivity change with optical excitation using a single 120 femtosecond laser pulse can, in ideal conditions, reach up to 15% at room temperature, which is comparable with the maximum signal obtained with electrical pulses. All of the measure- ments combined with current knowledge of quench switching illustrate the robust behavior of this mechanism across a wide range of conditions. 1
Investigation of effects of femtosecond laser pulses on spintronic structures
Farkaš, Andrej ; Olejník, Kamil (advisor) ; Uhlíř, Vojtěch (referee)
This thesis is focused on a detailed investigation of the optically induced quench switching effect in different films of antiferromagnetic CuMnAs. The quench switching effect was recently discovered to be highly reproducible resistance switch- ing, which can be excited by electrical and optical laser pulses. This thesis com- pares the amplitude response to laser-induced quench switching for samples on the different substrate material, samples with different stoichiometries, and sam- ples with different thicknesses of CuMnAs film. The effects of different ratios between the laser spot and the size of the measured device are investigated, and position-dependent measurements are also presented. It is shown that resistivity change with optical excitation using a single 120 femtosecond laser pulse can, in ideal conditions, reach up to 15% at room temperature, which is comparable with the maximum signal obtained with electrical pulses. All of the measure- ments combined with current knowledge of quench switching illustrate the robust behavior of this mechanism across a wide range of conditions. 1
Quench Switching of Antiferromagnetic CuMnAs
Kašpar, Zdeněk ; Olejník, Kamil (advisor) ; Goennenwein, Sebastian T.B. (referee) ; Uhlíř, Vojtěch (referee)
This thesis contains detailed study of a newly discovered effect of quench switch- ing in thin films of antiferromagnetic CuMnAs. This effect can be used to induce highly reproducible resistance switching behaviour in response to electrical or optical laser pulsing. The resistance changes reach up to GMR-like values of 20 % at room temperature and 100 % at low temperatures. We attribute these changes to the nano-fragmentation of magnetic domain structure. After CuMnAs is pulsed into a high resistance state, a characteristic period of time follows, during which the resistance relaxes back to the original value. This relaxation can be described by Kohlrausch stretched exponential function. This type of relaxation is characteristic for behaviour of correlated complex systems, which goes well with the idea of highly fragmented and correlated magnetic states of quenched CuMnAs. The quench switching effect is studied in detail on devices with different geometries, for various parameters of the writing pulse, as well as growth pa- rameters of the CuMnAs films. The switching is demonstrated in CuMnAs films prepared on GaP, GaAs and Si substrates, where the quality of the film differs. This illustrates robustness and application potential of the effect. 1
Magneto-optical characterization of spintronic materials
Wohlrath, Vladislav ; Němec, Petr (advisor) ; Olejník, Kamil (referee)
This work deals with magneto-optical measurements using a recently built prototype of a two- dimensional electromagnet. In the first stage, an experimental setup for magneto-optical measurements was constructed, which enables to study Voigt effect and magnetic linear dichroism. In the second stage, this setup was tested by measuring hysteresis loops in a sample of ferromagnetic semiconductor GaMnAs. In the final stage, we performed a new type of magneto- optical experiments, which fully exploits the two-dimensional control of the magnetic field generated in the electromagnet.
Characterization of two-dimensional electromagnet
Kimák, Jozef ; Němec, Petr (advisor) ; Olejník, Kamil (referee)
Abstract:In this work we studied magnetic field magnitude and direction ge- nerated by a prototype of 2-dimensional electromagnet, which was recently cons- tructed in Laboratory of the OptoSpintronics. This electromagnet is formed by two pairs of coils with a mutually perpendicular position of their poles. In parti- cular, we revealed that, by appropriately setting the current through the coils, it is possible to rotate reproducibly the field direction in the plane of the poles for the field magnitude of about 200 mT. We also observed that the generated field is rather homogeneous in a region with a radius of about 5 mm, which corresponds to a typical sample size. On the other hand, the functionality of the electromag- net at lower fields could not be tested unambiguously due to technical problems with a home-made detection Hall probes. This problem will be addressed in the following work. 1
Studium precese magnetizace v materiálech a strukturách pro spintroniku
Kašpar, Zdeněk ; Olejník, Kamil (advisor) ; Veis, Martin (referee)
In this thesis we studied precession mechanism in ferromagnetic thin film half-metal NiMnSb. We measured magnetization oscillations using optical pump and probe experiment at temperatures between 15 and 200 K and we evaluated the magnetic anisotropy fields, spin stiffness and Gilbert damping. New setup for ferromagnetic resonance measurement was built utilizing vector network analyser. With this setup we measured FMR at temperatures between 300 and 75 K. We evaluated the same parameters from FMR experiments as from the optical one. We found very good agreement in results obtained by the two methods. Powered by TCPDF (www.tcpdf.org)
Study of the structural properties of model ceria based catalysts
Beran, Jan ; Mašek, Karel (advisor) ; Olejník, Kamil (referee) ; Lykhach, Yaroslava (referee)
This work is concerning the study of model ceria based calalysts structure by methods of electron diffraction RHEED and photoelectron spectroscopy XPS. The influence of deposition conditions and substrate on the growth of epitaxial cerium oxide films on copper single crystals is described in detail. The work then describes the interaction of cerium and tin in model systems and the creation of SnCeOx mixed oxide and its structure. In the last chapter, the interaction of palladium with cerium and tin oxide layers is examined, and the creation of paladium bimetallic alloys is described. Powered by TCPDF (www.tcpdf.org)
Preparation and characterization of epitaxial tungsten oxide thin films
Pavlíková, Romana ; Mašek, Karel (advisor) ; Olejník, Kamil (referee)
Tungsten oxide thin films were prepared by vacuum evaporation on surfaces of Pd(111), Cu(111), Cu(110) and Cu(100) single crystals and studied by RHEED, XPS and AFM methods. The tungsten oxide deposition was done at temperatures from 300 řC to 400 řC in UHV or in oxygen atmosphere. The best deposition conditions - substrate temperature of 400 řC and oxygen atmosphere - were found resulting in growth of epitaxial and only partially reduced thin films. Thin films grown on the Pd(111) and Cu(111) surfaces consisted of two phases: a nearly atomically flat phase with (100) epitaxial plane and a phase formed by three dimensional particles with (111) epitaxial plane. Thin film deposited on Cu(100) also consisted of two phases: a flat film with (100) epitaxial plane and self-organised 1D structures parallel to Cu[010] and Cu[001] directions. Thin film prepared on the Cu(110) surface contained solely 1D structures parallel to Cu[1-10] surface direction. Capability of the partially reduced thin films for oxidation was studied. We applied oxidation using RF oxygen plasma, O2 exposure at elevated temperature and exposure to atmosphere. Thermal stability of the WO3/Cu(110) system was also investigated by heating up to 620 řC.
Dynamics of spin polarization in semiconductors
Janda, Tomáš ; Němec, Petr (advisor) ; Olejník, Kamil (referee)
In this work we study ultrafast laser-induced magnetization dynamics in samples of ferromagnetic semiconductor Ga1−xMnxAs with a nominal concentration of Mn within the range of x = 0,015-0,14. To get information about magnetization movement we use magneto-optic phenomena PKE and MLD in a time-resolved pump & probe experiment. Thorough analysis of the measured magneto-optical signal allows us to disentangle contributions due to angular movement of magnetization and due to demagnetization and to reconstruct 3D motion of magnetization vector without any numerical modeling. First we explain the basis of this experimental method and we demonstrate its utilization on the measured data. After that we study angular movement of magnetization vector and its dependence on the external magnetic field, excitation intensity and Mn concentration. The pump pulse helicity dependent and independent dynamics were treated separately. In the case of demagnetization we have been able to observe not only its intensity and Mn doping dependence but also the magnetic field dependence, which has not been reported so far in the literature.

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.