National Repository of Grey Literature 4 records found  Search took 0.02 seconds. 
Direct assembly of genome signals from nanopore sequencing
Karmazinová, Inna ; Maděránková, Denisa (referee) ; Sedlář, Karel (advisor)
The aim of this bachelor thesis is to search for overlaps between signals from nanopore sequencing using MinION device version R9. The theoretical part deals with methods used for genome assembly - greedy algorithm, overlap-layout-consensus (OLC) and de Bruijn graphs. Oxford Nanopore Technologies introduced the MinION device, which simplifies sequencing using the current change, which occurs while the DNA is passing through the nanopore. The error rate of the device is still high, the accuracy problem occurs during the base-calling. Using the difference signal, possibly also the dynamic time warping, it is possible to find overlaps between the individual signals. Signal analysis and genome assembly using the MinION signal could provide better accuracy.
Automatic rotational alignment of head CT scans
Karmazinová, Inna ; Kolář, Radim (referee) ; Jakubíček, Roman (advisor)
The aim of this thesis is automatic alignment of head CT scan. Currently, the alignment is performed manually by an expert, however this process is time consuming. Therefore, methods for automatization of this process are being developed. Two algorithms for alignment in axial and coronal plane were designed based on bilateral symmetry of head. Following an algorithm for alignment in sagittal plane which uses CG-TOB reference line for rotation angle detection. Algorithms were implemented in MATLAB and tested and validated using a database of manually annotated head CT scans.
Automatic rotational alignment of head CT scans
Karmazinová, Inna ; Kolář, Radim (referee) ; Jakubíček, Roman (advisor)
The aim of this thesis is automatic alignment of head CT scan. Currently, the alignment is performed manually by an expert, however this process is time consuming. Therefore, methods for automatization of this process are being developed. Two algorithms for alignment in axial and coronal plane were designed based on bilateral symmetry of head. Following an algorithm for alignment in sagittal plane which uses CG-TOB reference line for rotation angle detection. Algorithms were implemented in MATLAB and tested and validated using a database of manually annotated head CT scans.
Direct assembly of genome signals from nanopore sequencing
Karmazinová, Inna ; Maděránková, Denisa (referee) ; Sedlář, Karel (advisor)
The aim of this bachelor thesis is to search for overlaps between signals from nanopore sequencing using MinION device version R9. The theoretical part deals with methods used for genome assembly - greedy algorithm, overlap-layout-consensus (OLC) and de Bruijn graphs. Oxford Nanopore Technologies introduced the MinION device, which simplifies sequencing using the current change, which occurs while the DNA is passing through the nanopore. The error rate of the device is still high, the accuracy problem occurs during the base-calling. Using the difference signal, possibly also the dynamic time warping, it is possible to find overlaps between the individual signals. Signal analysis and genome assembly using the MinION signal could provide better accuracy.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.