National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Mitochondrial production of reactive oxygen species and its role in physiological regulations
Holzerová, Eliška ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
The production of mitochondrial reactive oxygen species and the resulting oxidative stress is an important phenomenon driving long-lasting research and intense discussions. Knowledge of exact mechanisms of reactive oxygen species production and pathways leading to their formation could help us to directly affect their production, a task with potential terapeutic implications. The molecular nature of the production of reactive oxygen species by some enzymes has already been well documented, but others still remain controversial and current theories are obviously far from the truth. Much more interesting is the question of physiological importace of this production. The reactive oxygen species were considered harmful factors clearly distorting the integrity of the organism for a long time. However, recent research suggest that their existence can also be beneficial and effective. Evidently they can serve as a signaling molecules in several metabolic and regulatory pathways occurring in the organism. This bachelor thesis offers insight into the current state of knowledge. It focuses on the most detailed description of the reactive oxygen species production by mitochondrial respiratory chain enzymes. Furthermore, it deals with some signaling cascades, where involvement of mitochondrially generated...
Molecular mechanism of reactive oxygen species production by flavin dehydrogenases of mitochondrial respiratory chain.
Holzerová, Eliška ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
The aim of this thesis is to investigate molecular mechanism of reactive oxygen species production by flavin dehydrogenases mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH). Together, they represent important source of reactive oxygen species in mammalian mitochondria, but the mechanism of electron leak is still poorly understood. Because mechanisms of reactive oxygen species production by other complexes of respiratory chain are better characterized, they can serve as case studies to get insight into mechanisms of reactive oxygen species by flavin dehydrogenases. Relevant knowledge is therefore summarized in the first part of the thesis. To study the production of reactive oxygen species by the isolated flavin dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements, hydrogen peroxide production studies by Amplex UltraRed fluorescence and luminol luminescence revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q binding site as the site of reactive oxygen species production in the case of mGPDH. Distinct mechanism of this production by the two dehydrogenases is also apparent from induction of reactive oxygen species...
Molecular mechanism of reactive oxygen species production by flavin dehydrogenases of mitochondrial respiratory chain.
Holzerová, Eliška ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
The aim of this thesis is to investigate molecular mechanism of reactive oxygen species production by flavin dehydrogenases mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH). Together, they represent important source of reactive oxygen species in mammalian mitochondria, but the mechanism of electron leak is still poorly understood. Because mechanisms of reactive oxygen species production by other complexes of respiratory chain are better characterized, they can serve as case studies to get insight into mechanisms of reactive oxygen species by flavin dehydrogenases. Relevant knowledge is therefore summarized in the first part of the thesis. To study the production of reactive oxygen species by the isolated flavin dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements, hydrogen peroxide production studies by Amplex UltraRed fluorescence and luminol luminescence revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q binding site as the site of reactive oxygen species production in the case of mGPDH. Distinct mechanism of this production by the two dehydrogenases is also apparent from induction of reactive oxygen species...
Mitochondrial production of reactive oxygen species and its role in physiological regulations
Holzerová, Eliška ; Mráček, Tomáš (advisor) ; Kalous, Martin (referee)
The production of mitochondrial reactive oxygen species and the resulting oxidative stress is an important phenomenon driving long-lasting research and intense discussions. Knowledge of exact mechanisms of reactive oxygen species production and pathways leading to their formation could help us to directly affect their production, a task with potential terapeutic implications. The molecular nature of the production of reactive oxygen species by some enzymes has already been well documented, but others still remain controversial and current theories are obviously far from the truth. Much more interesting is the question of physiological importace of this production. The reactive oxygen species were considered harmful factors clearly distorting the integrity of the organism for a long time. However, recent research suggest that their existence can also be beneficial and effective. Evidently they can serve as a signaling molecules in several metabolic and regulatory pathways occurring in the organism. This bachelor thesis offers insight into the current state of knowledge. It focuses on the most detailed description of the reactive oxygen species production by mitochondrial respiratory chain enzymes. Furthermore, it deals with some signaling cascades, where involvement of mitochondrially generated...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.