National Repository of Grey Literature 65 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
The study of preparation and catalytic activity of doped ABO3 perovskites for hydrogen synthesis
Dobeš, Jiří ; Cihlář, Jaroslav (referee) ; Cihlář, Jaroslav (advisor)
The Master´s thesis deals with the preparation of perovskite oxides by glycine synthesis with following characterization and analysis of catalytic activity. Especially is discussed crystallographic structure. In the theoretical part were first summarized the available information of the properties and usage of perovskite oxides. In the experimental part of the work was carried out the preparation of perovskite oxides and were made chemical analysis. Moreover a catalytic activity of selected perovskites has been studied and have been illustrated their crystal structure.
Photocatalytic water splitting by oxide semiconductors modified with graphen/graphenoxide
Marek, Jiří ; Čáslavský, Josef (referee) ; Cihlář, Jaroslav (advisor)
This master thesis deals with the topic of alternative production of hydrogen as the energy carrier of the future. The primary focus is on the production of hydrogen based on photocatalytical water splitting in the presence of semiconductor materials (especially modified and unmodified TiO2). The aim of the thesis is a synthesis of nanostructured oxide, graphene/graphene oxide particles and its composites, and a study of its structures and photocatalytical properties regarding photolysis of water. Products of the syntheses are described from the point of view of phase composition, surface area and photocatalytical activity. The main output of the thesis is a discussion of the influence of alkaline complex forming reagents on the hydrothermal low-temperature synthesis of biphasic TiO2, and a study of the influence of graphene/graphene oxide modification on photocatalytical activity of biphasic TiO2.
Processing and Properties of 1D and 2D Boron Nitride Nanomaterials Reinforced Glass Composites
Saggar, Richa ; Cihlář, Jaroslav (referee) ; Tatarko, Peter (referee) ; Dlouhý, Ivo (advisor)
Glasses and ceramics offer several unique characteristics over polymers or metals. However, they suffer from a shortcoming due to their brittle nature, falling short in terms of fracture toughness and mechanical strength. The aim of this work is to reinforce borosilicate glass matrix with reinforcements to increase the fracture toughness and strength of the glass. Boron nitride nanomaterials, i.e. nanotubes and nanosheets have been used as possible reinforcements for the borosilicate glass matrix. The tasks of the thesis are many fold which include: 1. Reinforcement of commercially derived and morphologically different (bamboo like and cylinder like) boron nitride nanotubes in borosilicate glass with the concentration of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. Same process was repeated with reinforcing cleaned boron nitride nanotubes (after acid purification) into the borosilicate glass with similar concentrations. 2. Production of boron nitride nanosheets using liquid exfoliation technique to produce high quality and high aspect ratio nanosheets. These boron nitride nanosheets were reinforced in the borosilicate glass matrix with concentrations of 0 wt%, 2.5 wt% and 5 wt% by ball milling process. The samples were consolidated using spark plasma sintering. These composites were studied in details in terms of material analysis like thermo-gravimetric analysis, detailed scanning electron microscopy and transmission electron microscopy for the quality of reinforcements etc.; microstructure analysis which include the detailed study of the composite powder samples, the densities of bulk composite samples etc; mechanical properties which include fracture toughness, flexural strength, micro-hardness, Young’s modulus etc. and; tribological properties like scratch resistance and wear resistance. Cleaning process of boron nitride nanotubes lead to reduction in the Fe content (present in boron nitride nanotubes during their production as a catalyst) by ~54%. This leads to an improvement of ~30% of fracture toughness measured by chevron notch technique for 5 wt% boron nitride nanotubes reinforced borosilicate glass. It also contributed to the improvement of scratch resistance by ~26% for the 5 wt% boron nitride nanotubes reinforced borosilicate glass matrix. On the other hand, boron nitride nanosheets were successfully produced using liquid exfoliation technique with average length was ~0.5 µm and thickness of the nanosheets was between 4-30 layers. It accounted to an improvement of ~45% for both fracture toughness and flexural strength by reinforcing 5 wt% of boron nitride nanosheets. The wear rates reduced by ~3 times while the coefficient of friction was reduced by ~23% for 5 wt% boron nitride nanosheets reinforcements. Resulting improvements in fracture toughness and flexural strength in the composite materials were observed due to high interfacial bonding between the boron nitride nanomaterials and borosilicate glass matrix resulting in efficient load transfer. Several toughening and strengthening mechanisms like crack bridging, crack deflection and significant pull-out were observed in the matrix. It was also observed that the 2D reinforcement served as more promising candidate for reinforcements compared to 1D reinforcements. It was due to several geometrical advantages like high surface area, rougher surface morphology, and better hindrance in two dimensions rather than just one dimension in nanotubes.
Study of preparation and structure of nanofibers of inorganic and organic biomaterials
Ručková, Jana ; Částková,, Klára (referee) ; Cihlář, Jaroslav (advisor)
The aim of this Master’s thesis is to investigate the preparation and structure of nanofibres of inorganic and organic biomaterials. Nanofibres of polycaprolactone, chitosane and their composites with hydroxyapatite particle were prepared by centrifugal force spinning process, which uses centrifugal forces for nanofibres spinning. Designed nanofibres can be used in bone tissue engineering. Experimental activity has started with synthesis of hydroxyapatite nanoparticles and preparation of polymer solutions and composite suspensions at different concentrations. The solutions and the suspensions were characterized by density and viscosity which were changed in dependence on temperature and polymer concentration. The solutions and the suspensions were spun at varying speeds and using two different sizes of collectors. The dependence of spinneret head revolution speed, size of collectors and polymer concentration on nanofibres diameter was studied. Biological activity of polycaprolactone and hydroxyapatite/polycaprolactone nanofibres was tested by means of SBF.
Synthesis and Properties of Ceramic Photocatalytic Materials
Strejček, Josef ; Maca, Karel (referee) ; Cihlář, Jaroslav (advisor)
Two methods of synthesis of ceramic catalytic perovskite materials for fotochemical decomposition of water and partial oxidation of methane were studied. The method based on mechanochemical activation of oxide reactants followed high temperature solid state reaction made possible preparation of almost one phase perovskites of InVO4, InNbO4, InTaO4, EuVO4, EuNbO4 a EuTaO4. Pseudo sol-gel synthesis combined with high temperature solid state reaction lead to one phase perovskites or products with more than 90% of perovskites phase of the Sm-Ca-Co-Al-O type.
Synthesis and properties of ceramic nanoparticles based on anionic doped composite oxides of titanium
Kašpárek, Vít ; Veselý, Michal (referee) ; Cihlář, Jaroslav (advisor)
Master’s thesis deals with synthesis of anatase and its anion doping by carbo-nitridation. Prepared samples were used for testing of the photocatalytic activity. Low-temperature anatase was synthesized at 80 °C for 6 hours and carbo-nitridatation was carried out in ammonia/tetrachloromethane atmosphere at 500 °C for 3 hours. The influence of silver content on low-temperature crystallization of anatase was studied by reaction of titanium tetraisopropoxide with water. Silver nanoparticles were prepared by reduction of silver nitrate by D-glukose and sodium citrate. One of the results is the draft for one-pot synthesis of anatase by titanium tetraisopropoxide with complexing agent (sodium citrate, ammonium citrate, citric acid). The study of photocatalysis water splitting was carried out in the presence of 20 % vol. of methanol. Anatase prepared with citric acid has the highest photocatalytic activity (Pt 0,5 %) in UV/VIS spectral region. The activity achieved 38,6 % effectiveness of TiO2 standard (Degussa P25). Doping by nitrogen didn’t lead to increase of photocatalytic activity.
Laminated Ceramic Composites - Deposition, Structure and Properties
Drdlík, Daniel ; Maca, Karel (referee) ; Cihlář, Jaroslav (advisor)
The work was focused on the preparation of layered ceramic materials and their characterizations. The direct measurment of weight deposite for enhanced description of one component system was studied within this work. The kinetics of electrophoretic deposition obtained from theoretical calculation and from experimental values were confronted. It was prepared a lot of depositions for described kinetic of electrophoretic deposition with applied constant currents. The relative density and porosity were determined on the annealled and sintered bodies. The hardness measurments were performed on sintered bodies and then resulted values were confronted with the used currents. A ceramic composite based on Al2O3 and ZrO2 was prepared by using of precision describtion of electrophoretic deposition kinetic.
Study of Perovskite Type Oxide Catalysts for Partial Oxidation of Methane
Cihlář, Jaroslav ; Hanykýř, Vladimír (referee) ; Čapek,, Libor (referee) ; Čičmanec,, Pavel (advisor)
Research was curried out on the perovskite systems with general formula A1-xA‘xB1-yB‘yO3± (where A=La, Sm, A´=Ca, B´=Al, B=Co,Fe,Mn and Cr). Perovskite oxides were sythesized by polymerisation methods and characterised by RTG analysis, BET method, SEM and EDX. TPD spectra and catalyst testing were measured in high temperature plug flow reactor and products were analysed by mass spectrometry. It was found, that metane oxidation at ratio O2/CH40,5 depended on the temperature. Total oxidation proceeded at the temperature betwen 300-700oC to the carbon dioxide and water, while the partial oxidation of metane (POM) occured at above 700oC to the hydrogen and carbon oxid (syngas). This was ascribed by equilibrium of O2 betwen gas phase and solid perovskite. There was used 12 perovskite systems, which catalysed methane oxidation by the same way. Dry reforming of methane run above temperature 700oC. Cobaltite and ferite type perovskites were found as the most active catalytic systems. On the base of obtained results the Mars van Krevelen mechanism was established for explanation of oxidation and reformation of methane by perovskite systems. It was showed, that POM was running by two steps mechanism. Products of total oxidation was occured in the first step, which were passed over to the syngas (H2+CO) in the second step.
Composite Dental Biomaterials - Structure, Analysis and Properties
Matoušek, Aleš ; Vaněk,, Jiří (referee) ; Lapčík,, Lubomír (referee) ; Cihlář, Jaroslav (advisor)
The aim of this work is to define relations between grain size and bioaktivity of oxide ceramics, specifically ZrO2, Al2O3 and HA. Ceramic materials with grain size from 100 nm up to 10 m, with various surface roughness, were tested for its bioactivity. Ceramography analysis was performed for all tested materials to precisely describe microstructures. Biological properties of the ceramic materials were tested via dilation tests directly in-vitro and by in-vitro extraction. Three cell culturing lines: osteoblast MG63, fibroblast L929, and epithelioid HeLa, were used for our testing. An influence of the grain size on the biological response was only found for the ceramic materials which had been thermally etched. The thermally etched nanocrystalline samples had larger areas covered by cells than ceramics with coarse grain microstructure. Biological tests on layered composites Al2O3×ZrO2 showed the cell selection determined by the type of material, where ZrO2 surfaces were preferably covered. Improved biological response of nanocrystalline ZrO2 was demonstrated on ceramic ZrO2, Al2O3 and SiO2 substrates with nanocrystalline coating of ZrO2. In this work a novel technological process for the formation of defect-free coatings was developed. Sintered coatings were tested using in-vitro technique with cell line HeLa, L929 and MG63 for up to 72 hours. The results of the biological tests of nanocrystalline coatings were consistent with results from the bulk nanocrystalline thermally etched ZrO2 ceramics.
Study of the synthesis and structure of ceramic perovskite materials for energy applications
Strejček, Josef ; Bartoníčková, Eva (referee) ; Cihlář, Jaroslav (advisor)
Method, so called “glycin- nitrate process”, combined with high temperature solid state reaction, of preparation multi- component ceramic perovskite materials was studied. Two types of perovskite systems were prepared by this method. Firs one, based on LaNiO3 doped by calcium and aluminium and second one, based on SmFeO3 doped by calcium and nickel or cobalt. This method made possible preparation of one phase perovskite or perovskites with few percent of nickel in form of oxide. In systems containing both nickel and calcium another phases rich in calcium and nickel appeared.

National Repository of Grey Literature : 65 records found   1 - 10nextend  jump to record:
See also: similar author names
3 CIHLÁŘ, Jaromír
6 Cihlář, Jan
2 Cihlář, Jiří
Interested in being notified about new results for this query?
Subscribe to the RSS feed.