National Repository of Grey Literature 11 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Conductive open-cell silicone foam for modulatable damping and impact sensing applications
Preuer, R. ; Šleichrt, Jan ; Kytýř, Daniel ; Graz, I.
Nature has long served as a source of inspiration for the development of new materials, with foam-like structures in fruits such as oranges and pamelos serving as examples of efficient energy dissipation. In this study, we present the synthesis and characterization of a conductive silicone foam for potential impact sensing applications. By blending Sylgard 184 and Carbon Black, we create a highly porous structure capable of dissipating energy and modulating its resistance. To investigate the properties of the foam, we utilized both micro-computer tomography (μCT) and scanning electron microscopy (SEM) imaging techniques. The μCT imaging revealed the intricate pore network of the foam, reminiscent of the complex structure found in natural sponges. SEM imaging allowed for observation of the uniform distribution of Carbon Black particles within the foam, enabling the conductive properties of the foam. The foam’s mechanical behavior was characterized by a compression test under μCT imaging to measure the deformation behavior and changes in the foam’s resistance. Additionally, a ball drop test was conducted to investigate the foam’s damping behavior while simultaneously measuring the impact location by the local change in resistance. Remarkably, our results demonstrate the exceptional damping capabilities of the conductive silicone foam, with the damping ratio modulated by adjusting the degree of compression-induced deformation. This is attributed to the collapse of the foam’s porous structure, resulting in a significant increase in the foam’s contact area. Overall, our study provides valuable insights into the behavior of conductive silicone foams and their potential as an impact sensing material. The use of both CT and SEM imaging techniques allows for a comprehensive understanding of the foam’s properties, which can be optimized for a variety of applications. The foam’s ability to modulate its damping properties by adjusting the degree of deformation provides a promising avenue for future research in the field of materials science and engineering.
Computed tomography system with strict real-time synchronization for in-situ 3D analysis of periodically vibrating objects
Rada, Václav ; Fíla, Tomáš ; Zlámal, Petr ; Koudelka_ml., Petr ; Šleichrt, Jan ; Macháček, Michael ; Vavřík, Daniel ; Kytýř, Daniel
In the contribution, we present a laboratory system capable of X-ray computed tomography (XCT) scanning of an periodically moving or oscillating object. The system is an in-house developed XCT setup with electromagnetic voice coil actuator mounted on top of the rotary stage of the setup. The strict synchronization of the components, the rotary stage, the electromagnetic actuator movement and the detector readout is accomplished with use of the detector hardware trigger and hard real-time Linux operating system. Cylindrical sample manufactured from epoxy resin with metal particles to enable movement tracking is scanned in a stationary position and during periodical movement induced by the vibration stage. The volumetric data of the scans is compared and the results of this contribution represent an important step towards identification of defects through modal analysis of in-situ harmonically vibrating object.
Stereolithography for manufacturing of advanced porous solids
Drechslerová, V. ; Neuhäuserová, M. ; Falta, J. ; Šleichrt, J. ; Kytýř, Daniel
The aim of this paper is focused on benefits of stereolithography (SLA) technology for the fabrication of the lightweight lattice structures with potential for load-bearing function and high absorption of impact energy. SLA is an additive manufacturing technology employing the principle of liquid resins curing moderated by radiation of a wavelength from ultra-violet band where resulting material parameters are tunable by setting of the curing process. The batches of samples manufactured using three different resins were subjected to quasi-static uni-axial tensile and compression tests. Acquired data were processed to derive deformation behaviour expressed as stress-strain diagrams and fundamental material properties. Based on the knowledge obtained from the mechanical tests, the setup of the fabrication parameters, the most suitable resin for manufacturing of the lattice structures and the overall suitability of SLA technology for the fabrication of advanced porous materials, were determined.
In-situ compression test of artificial bone foams in controlled environment using X-Ray micro-computed tomography
Glinz, J. ; Kytýř, Daniel ; Fíla, Tomáš ; Šleichrt, Jan ; Schrempf, A. ; Fürst, D. ; Kastner, J. ; Senck, S.
In this study, we investigated specimens of artificial bone foams, developed by the research group for surgical simulators at the UAS Linz, which are used to mimic the haptic feedback of physiologic and pathologic bone for more realistic surgery training. Specimens with two kinds of mineral filler material as well as different amounts of foaming agent were tested in an environmental in-situ loading stage developed by the ITAM CAS and scanned via X-ray micro-computed tomography. In this in-situ stage, specimens can be immersed in liquid and tested under temperature-controlled conditions. Consequently, a total amount of 12 specimens was subjected to compression loading, half of them immersed in water at 36.5 °C and half in dry condition. Results showed that there is no significant influence of liquid immersion to the compression outcome. However, foams with less amount of foaming agent appeared to have smaller pores resulting in higher compression strength.
Deformation response of polydimethylsiloxane substrates subjected to uniaxial quasi-static loading
Vinařský, V. ; Martino, F. ; Forte, G. ; Šleichrt, Jan ; Rada, Václav ; Kytýř, Daniel
To investigate cellular response of cardiomyocytes to substrate mechanics, biocompatible material with stiffness in physiological range is needed. PDMS based material is used for construction of microfluidic organ on chip devices for cell culture due to ease of device preparation, bonding, and possibility of surface functionalization. However it has stiffness orders of magnitude out of physiological range. Therefore, we adapted recently available protocol aiming to prepare substrates which offer stiffness in physiological range 5−100 kPa using various mixtures of Sylgard. An in-house developer loading device with single micron position tracking accuracy and sub-micron position sensitivity was adapted for this experimental campaign. All batches of the samples were subjected to uniaxial loading. During quasi-static experiment the samples were compressed to minimally 40% deformation. The results are represented in the form of stress-strain curves calculated from the acquired force and displacement data and elastic moduli are estimated.
Basic biomechanical characterization of polyurethane based artificial cancellous structures
Šleichrt, Jan ; Kytýř, Daniel ; Pithartová, Kateřina ; Senck, S. ; Fürst, D. ; Schrempf, A.
The main goal of this study is to validate elementary mechanical parameters of a newly designed open-cell foam. The purpouse for investigating artificial material is to approach the properties of the human bone in the case of its adequate replacement. Investigated material can be also used as an artificial bone to train surgical procedures and to improve the skills of the surgeons. Four sets of the foam with different chemical composition were subjected to an uniaxial quasi-static loading to describe basic mechanical behaviour of these samples. Based on these experiments, the stress-strain diagrams were created as a comparative tool including calculation of the effective Young’s modulus. The acquired knowledges will be used as input parameters of a follow-up study aimed at describing the morphology of presented structures and their response to mechanical experiments. A distortion effect of porosity on the results is not considered in this study.
Semi-automated assessment of micromechanical properties of the metal foams on the cell-wall level
Krčmářová, Nela ; Šleichrt, J. ; Doktor, T. ; Kytýř, Daniel ; Jiroušek, O.
Metal foams are innovative porous material used for wide range of application such as deformation energy or sound absorption, filter material, or microbiological incubation carrier. To predict mechanical properties of the metal foam is necessary to precisely describe elasto–plastic properties of the foam on cell–wall level. Indentation with low load is suitable tool for this purpose. In this paper custom designed instrumented microindentation device was used for measurement of cell-wall characteristics of two different aluminium foams (ALPORAS and ALCORAS). To demonstrate the possibility of automated statistical estimation of measured characteristics the device had been enhanced by semi-automatic indent positioning and evaluation procedures based on user-defined grid. Vickers hardness was measured on two samples made from ALPORAS aluminium foam and one sample from ALCORAS aluminium foam. Average Vickers hardness of ALPORAS foam was 24.465 HV1.019 and average Vickers hardness of ALCORAS was 36.585 HV1.019..
Deformation behaviour of gellan gum based artificial bone structures under simulated physiological conditions
Krčmářová, N. ; Šleichrt, J. ; Fíla, Tomáš ; Koudelka_ml., Petr ; Kytýř, Daniel
The paper deals with investigation of deformation behaviour of gellan gum (GG) based\nstructures prepared for regenerative medicine purposes. Investigated material was synthesized as porous spongy-like scaffold reinforced by bioactive glass (BAG) nano-particles in different concentrations. Deformation behavior was obtained employing custom designed experimental setup. This device equipped with bioreactor chamber allows to test the delivered samples under simulated physiological conditions with controlled flow and temperature. Cylindrical samples were subjected to uniaxial quasi-static loading in tension and compression. Material properties of plain scaffold buffered by 50 wt% and 70 wt% BAG were derived from a set of tensile and compression tests. The results are represented in form of stress-strain curves calculated from the acquired force and displacement data.
Deformation characteristics of chopped fibre composites subjected to quasi-static tensile loading
Šleichrt, J. ; Adorna, M. ; Neühauserová, M. ; Fenclová, N. ; Petráňová, Veronika
This work presents deformation behaviour of cost effective chopped fiber composites. Use of chopped fibre is advantageous for manufacturing however complex shape parts production technology could be challenging. Batches of samples with different fibres composition were subjected to uni-axial tensile loading to obtain overall materials properties and inspection of proper manufacturing based on local deformation inhomogeneities. Both crossbeam displacement and optical strain measurement were used for elastic characteristics evaluation. Deformation response was derived from full-field optical strain measurements based on digital image correlation method. Relatively large variation of mechanical properties testing of samples was found.
Experimental assessment of creep behaviour of C/PPS chopped fibre composite
Kytýř, Daniel ; Fíla, Tomáš ; Šleichrt, Jan ; Fenclová, Nela
The report deals with experimental assessment of creep behaviour of C/PPS chopped fibre composite subjected to uniaxial loading. Digital image correlation was employed for full-field strain measurement. Creep behaviour was described using Findley model.

National Repository of Grey Literature : 11 records found   1 - 10next  jump to record:
See also: similar author names
1 Šleichrt, Jan
Interested in being notified about new results for this query?
Subscribe to the RSS feed.