National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Implicitly weighted robust estimation of quantiles in linear regression
Kalina, Jan ; Vidnerová, Petra
Estimation of quantiles represents a very important task in econometric regression modeling, while the standard regression quantiles machinery is well developed as well as popular with a large number of econometric applications. Although regression quantiles are commonly known as robust tools, they are vulnerable to the presence of leverage points in the data. We propose here a novel approach for the linear regression based on a specific version of the least weighted squares estimator, together with an additional estimator based only on observations between two different novel quantiles. The new methods are conceptually simple and comprehensible. Without the ambition to derive theoretical properties of the novel methods, numerical computations reveal them to perform comparably to standard regression quantiles, if the data are not contaminated by outliers. Moreover, the new methods seem much more robust on a simulated dataset with severe leverage points.
Meta-Parameters of Kernel Methods and Their Optimization
Vidnerová, Petra ; Neruda, Roman
In this work we deal with the problem of metalearning for kernel based methods. Among the kernel methods we focus on the support vector machine (SVM), that have become a method of choice in a wide range of practical applications, and on the regularization network (RN) with a sound background in approximation theory. We discuss the role of kernel function in learning, and we explain several search methods for kernel function optimization, including grid search, genetic search and simulated annealing. The proposed methodology is demonstrated on experiments using benchmark data sets.
Behaviour Emergence of Robotic Agents: Neuroevolution
Vidnerová, Petra ; Slušný, Stanislav ; Neruda, Roman
This paper deals with emergence of intelligent behaviour of mobile robotic agents using evolutionary learning. Evolutionary learning is demonstrated on several experiments, including different neural network architectures

Interested in being notified about new results for this query?
Subscribe to the RSS feed.