National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Investigation and Modelling of Concrete Carbonation
Rovnaníková, Markéta ; Keršner, Zbyněk (referee) ; Bajza, Adolf (referee) ; Havlica, Jaromír (advisor)
The corrosion of steel reinforcement is probably the most frequent type of degradation of reinforced concrete structures. Reinforcing bars are protected from corrosion by a thin iron oxide layer which is formed on their surface due to a high alkalinity of the surrounding concrete. Corrosion may start when this layer is destroyed (i) either by chloride ion penetration (when the concentration of dissolved chloride at the depth of the reinforcing steel exceeds a critical value) or (ii) by a reduction in the pH value of pore solution to values below 9.5. Such a reduction in alkalinity is the result of carbonation of the Ca(OH)2 in the concrete mass, i.e. of its reaction with the atmospheric CO2. The main aim of this work is an experimental investigation and modelling of carbonation process. The effect of relative humidity, curing period and replacement of Portland cement by supplementary cementing materials (SCM - fly ash, blast furnace slag and metakaolin) on carbonation process has been studied. Calcium hydroxide content in the presence of SCM and their pozzolanic activities have been also determined. Furthermore, lots of parametric studies and comparison of carbonation models have been provided. The software tools based on the introduced models and considering the input data to be statistically independent random variables have been described and used for other parametric studies.
Application of Sol-Gel Method for Preparation of Dicalcium Silicate and its Solid Solutions
Baráček, Jan ; Živica, Vladimír (referee) ; Rovnaníková, Markéta (referee) ; Palou, Martin (advisor)
The subject of this doctoral thesis was to elucidate the mechanism of reaction leading to the formation of dicalcium silicate (C2S), its solid solutions and other phosphatic calcium silicate phases using the sol-gel method of synthesis. SiO2 (Tosil A), CaO (calcium nitrate tetra-hydrate) and H3PO4 (as a source of P2O5) were used as starting materials. Series of samples with different content of P2O5 were synthesized. The characterization of Tosil A and samples was based on the following methods: DTA/TGA and EGA, XRD and SEM and EDS analy-ses. It is known, that phosphorous oxide can enter the structure of C2S and possibly form solid solutions and different phosphatic calcium silicate phases in C2S–C3P system. Depending on the P2O5 concentration in mixtures, three distinct phases are formed: larnite (2CaO•SiO2), Ca14,92(PO4)2,35(SiO4)5,65 and 5CaO•SiO2•P2O5, as detected by XRD. Local microanalysis de-monstrated the presence of calcium phosphate epicenters (C3P) containing SiO2, calcium sili-cate (C2S) zones with minimum content of P2O5 and intermediary areas of various phosphatic calcium silicates. The formation of two distinct islets of C2S and C3P is due the affinity of acid oxides (SiO2, P2O5) towards the basic one (CaO) during the sol-gel process. Then, the formation of various phosphatic calcium silicates results from the diffusion of P2O5 and SiO2 towards calcium silicate and calcium phosphate, respectively.
Application of Sol-Gel Method for Preparation of Dicalcium Silicate and its Solid Solutions
Baráček, Jan ; Živica, Vladimír (referee) ; Rovnaníková, Markéta (referee) ; Palou, Martin (advisor)
The subject of this doctoral thesis was to elucidate the mechanism of reaction leading to the formation of dicalcium silicate (C2S), its solid solutions and other phosphatic calcium silicate phases using the sol-gel method of synthesis. SiO2 (Tosil A), CaO (calcium nitrate tetra-hydrate) and H3PO4 (as a source of P2O5) were used as starting materials. Series of samples with different content of P2O5 were synthesized. The characterization of Tosil A and samples was based on the following methods: DTA/TGA and EGA, XRD and SEM and EDS analy-ses. It is known, that phosphorous oxide can enter the structure of C2S and possibly form solid solutions and different phosphatic calcium silicate phases in C2S–C3P system. Depending on the P2O5 concentration in mixtures, three distinct phases are formed: larnite (2CaO•SiO2), Ca14,92(PO4)2,35(SiO4)5,65 and 5CaO•SiO2•P2O5, as detected by XRD. Local microanalysis de-monstrated the presence of calcium phosphate epicenters (C3P) containing SiO2, calcium sili-cate (C2S) zones with minimum content of P2O5 and intermediary areas of various phosphatic calcium silicates. The formation of two distinct islets of C2S and C3P is due the affinity of acid oxides (SiO2, P2O5) towards the basic one (CaO) during the sol-gel process. Then, the formation of various phosphatic calcium silicates results from the diffusion of P2O5 and SiO2 towards calcium silicate and calcium phosphate, respectively.
Investigation and Modelling of Concrete Carbonation
Rovnaníková, Markéta ; Keršner, Zbyněk (referee) ; Bajza, Adolf (referee) ; Havlica, Jaromír (advisor)
The corrosion of steel reinforcement is probably the most frequent type of degradation of reinforced concrete structures. Reinforcing bars are protected from corrosion by a thin iron oxide layer which is formed on their surface due to a high alkalinity of the surrounding concrete. Corrosion may start when this layer is destroyed (i) either by chloride ion penetration (when the concentration of dissolved chloride at the depth of the reinforcing steel exceeds a critical value) or (ii) by a reduction in the pH value of pore solution to values below 9.5. Such a reduction in alkalinity is the result of carbonation of the Ca(OH)2 in the concrete mass, i.e. of its reaction with the atmospheric CO2. The main aim of this work is an experimental investigation and modelling of carbonation process. The effect of relative humidity, curing period and replacement of Portland cement by supplementary cementing materials (SCM - fly ash, blast furnace slag and metakaolin) on carbonation process has been studied. Calcium hydroxide content in the presence of SCM and their pozzolanic activities have been also determined. Furthermore, lots of parametric studies and comparison of carbonation models have been provided. The software tools based on the introduced models and considering the input data to be statistically independent random variables have been described and used for other parametric studies.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.