Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
MEMS Thermoelectric Generator for Aerospace Applications
Janák, Luděk ; Opluštil, Vladimír (oponent) ; Hadaš, Zdeněk (vedoucí práce)
This master’s thesis deals with the development of a power source based on the MEMS thermoelectric generator. The proposed power source should be used for supplying of an aircraft-specific autonomous sensor unit. System-level point of view on the autonomous sensor includes the sensor with data acquisition and transmission, energy harvester (thermoelectric generator), power management, energy storage element and self-diagnostics. All the above-mentioned components are described in detail. In the introductory part is provided the broad state-of-art review of aircraft-specific thermoelectric generators. Subsequently are explained the theoretical aspects of DC/DC converters for energy harvesting. The special emphasis is put on the Maximum Power Point Tracking (MPPT). As a basis for the autonomous sensor supply sensor unit design were performed various simulations using MATLAB/Simulink Simscape. The identification of model parameters is based on a measurement with special test bench. The practical implementation of theoretically outlined principles is illustrated on the purpose-designed technology demonstrator. The conclusion deals with an application of the presented technology in an aircraft-specific field and the associated issues.
MEMS Thermoelectric Generator for Aerospace Applications
Janák, Luděk ; Opluštil, Vladimír (oponent) ; Hadaš, Zdeněk (vedoucí práce)
This master’s thesis deals with the development of a power source based on the MEMS thermoelectric generator. The proposed power source should be used for supplying of an aircraft-specific autonomous sensor unit. System-level point of view on the autonomous sensor includes the sensor with data acquisition and transmission, energy harvester (thermoelectric generator), power management, energy storage element and self-diagnostics. All the above-mentioned components are described in detail. In the introductory part is provided the broad state-of-art review of aircraft-specific thermoelectric generators. Subsequently are explained the theoretical aspects of DC/DC converters for energy harvesting. The special emphasis is put on the Maximum Power Point Tracking (MPPT). As a basis for the autonomous sensor supply sensor unit design were performed various simulations using MATLAB/Simulink Simscape. The identification of model parameters is based on a measurement with special test bench. The practical implementation of theoretically outlined principles is illustrated on the purpose-designed technology demonstrator. The conclusion deals with an application of the presented technology in an aircraft-specific field and the associated issues.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.