National Repository of Grey Literature 16 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Pvdf —AN Ideal Candidate For Use In Nanogenerators
Pisarenko, Tatiana
In this work, the PVDF composite, also known as polyvinylidene fluoride in the formof thin nanofibres, was created. Subsequently, a single-fibre characterization was performed, whichproves its piezoelectric properties and describes its structure. Electron microscopy, atomic forcemicroscopy and X-ray photoelectron spectroscopy were chosen as characterization methods. Thediscussion in this paper deals with the ability of these fibres to use PVDF as a nanogenerator.
Preparation and characterization of nanostructured resorbable substitutes for accelerated skin healing
Kacvinská, Katarína ; Muchová, Johana (referee) ; Vojtová, Lucy (advisor)
Spolu s narastajúcimi nárokmi na kvalitu liečby v oblasti popálenin a plastickej chirurgie existuje možnosť ako uplatniť nové technologické riešenie na liečbu porúch s celkovou stratou kožnej vrstvy. Diplomová práca sa zaoberá prípravou nanoštrukturovaného, dvojvrstvového skafoldu pre využitie v tkánivovom inžinierstve, ktorý nahrádza kožnú časť dermis (dolná porézna vrstva) a bazálnu membránu (horná a tenká nanovlákenná vrstva). Zákaldom dolnej pórovitej vrstvy je kolagén, charakterizovaný v prítomnosti ďalších polysacharidových aditív: chitosan, vápenatá soľ oxidovanej celulózy (CaOC), sodná soľ karboxymetylcelulózy (NaCMC). Zároveň prídavok dopamínu a fibroblastového rastového faktoru (FGF), s cieľom zlepšiť biomechanické vlastnosti, regulovať a podporovať hojenie kože. Tenká nanovlákenná vrstva je zložená zo želatíny, polycaprolaktónu (PCL) a CaOC. Sú navrhnuté dva rôzne mechnizmy prípravy skafoldu, ktoré sa odlišujú sa v prítomnosti sieťovaných a nesieťovaných nanovláken. Skafoldy boli charakterizované z hľadiska biomechanických, štruktúrnych vlastností a in vitro. Vrchná nanovlákenná vrstva poskytuje mechanickú podporu, ktorá je výrazne zvýšená prítomnosťou polydopamínu (PDA). Test botnania poréznej vrstvy skafoldu ukázal na dostatočne veľké póry, umožňujúce filtráciu buniek. Táto botnatosť bola znížená v prítomnosti PDA, ktorý má zároveň významný vplyv na časové predĺženie degrádácie v prítomnosti kolagenázy a lyzozýmu. Spolu s FGF výrazne podporil proliferizáciu a životaschopnosť myších fibroblastov. Nanoštrukturovaný, dvojvrstvový skafold má potenciál pre budúce aplikácie pri hojení rán, kedže sa vyznačuje dobrými mechanickými vlastnosťami a umožňuje bunkám adherovať, proliferovať a formovať extra celulárny matrix.
Antibacterial electrospun membrane prepared from poly(vinylidene fluoride)-co-hexafluoropropylene with lauric acid monoacylglycerol
Zelenková, Jana ; Peer, Petra ; Pleva, P. ; Janalíková, M. ; Sedlaříková, J. ; Filip, Petr
The aim of this study was to prepare an antibacterial nanofibrous membrane using electrospinning technique. The nanofibrous membranes were spun from polymer solution of poly(vinylidne fluoride)-co-hexafluoropropylene (PVDF-co-HFP) dissolved in N,N´-dimethylformamide. Monoacylglycerol of lauric acid (MAG C12) was used as an antimicrobial agent at the concentrations ranging from 1 to 3 wt%. The impact of MAG C12 incorporation on the rheological, structural and antibacterial properties was investigated. The rheological tests of polymer solutions, as steady shear and oscillatory shear, proved that addition of MAG C12 changed marginally rheological quantities such as viscosity, elastic (storage) and viscous (loss) moduli. Measurement of mean nanofibres diameter indicated a slight decrease with increasing MAG C12 concentration. Antimicrobial activity of PVDF-co-HFP nanofibre membranes with incorporated MAG C12 against Gram-positive bacteria Staphylococcus aureus and Gram-negative Escherichia coli was studied. An antibacterial activity was revealed for the samples containing MAG C12 at all concentrations against Gram-positive bacteria Staphylococcus aureus by the disk diffusion method.
Magnetic properties of electrospun polyvinyl butyral/Fe2O3 nanofibrous membranes
Peer, Petra ; Cvek, M. ; Urbánek, M. ; Sedlačík, M.
In this contribution, magnetic Fe2O3 nanoparticles (MNPs) were successfully incorporated into the polyvinyl butyral (PVB) nanofibrous membranes using the electrospinning process. The effects of the MNP concentration on the morphology of the nanofibres and their magnetic properties were investigated. Scanning electron microscopy and transmission electron microscopy confirmed their concentration-dependent, yet uniform diameter, and the presence of well-embedded MNPs inside the PVB nanofibres. The magnetic properties of the PVB/MNP membranes were studied using the vibrating-sample magnetometry. The saturation magnetization increased from 6.4 to 45.5 emu/g as the MNP concentration in the feedstock solution increased from 1 to 15 wt%. The fabricated PVB/MNP nanofibrous membranes possessed the ability to respond to the external magnetic fields, which determines their potential in the development of the advanced smart textiles.
Flexible generators of electrical energy
Tesařová, Tereza ; Holcman, Vladimír (referee) ; Tofel, Pavel (advisor)
This bachelor thesis is focused on actual research part of energy harvesting technologies – flexible electrical generators, which mean the special generating of electricity using specific flexible materials. The net charge result is affected by the incidental mechanism to transform certain energy form into electrical power and is influenced of material range, which determines what will be harnessed as a source of energy. The energy harvesting is aiming at producing alternative and efficient ways instead of harmful and strained manufacture processing.
Functionalized chitosan-based nanofibres for accelerated regeneration of soft tissues
Bazikov, Philipp ; Filová, Eva (advisor) ; Kössl, Jan (referee)
To improve the regeneration of soft tissues, wound dressings were developed, containing nanofibers, different in composition and functional features. The work concentrates on chitosan and composite scaffolds containing chitosan. Porous nanofibre materials based on chitosan are very promising for the regeneration of soft tissues. Chitosan exhibits pH-sensitive behavior due to the large number of amino groups on its chains, which makes chitosan nanofibres promising carriers for the delivery of drugs. In this work, the examples of different modifications of nanofibres are shown. To increase the efficiency and accelerate the regeneration of soft tissues, nanofibres are functionalized with bioactive substances of various types: antimicrobial, analgesic, growth factors, etc. To stabilize nanofibres and to improve the physical characteristics, treatments using glutaraldehyde, glyoxal, genipin or heat treatment were used. Chitosan is used to inhibit fibroplasia during wound healing and to promote cell growth and differentiation. The efficiency of antibacterial activity of chitin-glucan complex with nanofibres for wound healing was shown. Reconstruction of deeper wounds, in which skin and soft tissues are damaged, requires measures for spatial reconstruction and stimulation of regeneration processes in the...
Encapsulation of plant extracts containing phenolic compounds into nanoparticles and nanofibers
Petrželková, Markéta ; Bokrová, Jitka (referee) ; Matoušková, Petra (advisor)
The presented bachelor thesis was focused on the encapsulation of extracts containing phenolic substances in order to apply these materials in cosmetics. At work were prepared aqueous, ethanol and lipid extracts of coffee and cocoa. All extracts were characterized on the content of all polyphenols and flavonoids. Their antioxidant aktivity and SPF were also determined. Then the selected extracts were encapsulated into liposomes and polyhydroxybutyrate nanofibres. The basic characteristics of the prepared liposomes were also observed and also their SPF and antioxidant aktivity were monitored. The highest antioxidant aktivity and SPF had liposome particles containing ethanol cocoa extracts. The liposome particles were applied to cosmetic emulsion. These creams evince high antioxidant acitivity and stability determined by analytical centrifugation. Also the prepared nanofibres had high antioxidant aktivity and confirmed the gradual release of the active substances. In conclusion the test cytotoxicity on human keratinocytes confirmed the safety of prepared nanomaterials using the MTT test, which are therefore suitable for cosmetic applications.
Preparation of nanoparticles and nanofibers for application in anti-acne products
Tilšarová, Kamila ; Veselá, Mária (referee) ; Matoušková, Petra (advisor)
The diploma thesis was focused on the preparation and characterization of nanoparticles and nanofibres with active substances from chosen herbs with the aim to apply this materials to the products against acne. Various types of extracts were tested on the content of polyphenols, flavonoids and antioxidation activity. These extracts were encapsulated to the liposomes and fibres of polyhydroxybutyrate. Prepared liposomes and fibres were tested mainly on antioxidation activity and antimicrobial activity against the strain Propionibacterium acnes. Then, liposomes were applied to cosmetic emulsions. These creams reported high antioxidation activity and excellent stability determined by analytical centrifugation. Prepared nanofibres also reported high antioxidation activity and antimicrobial effect as well. Finally, particles and fibres were tested in contact with human cells. In appropriate concentration, there was no cytotoxic effect and tested materials can be used in applications on problems with acne.
Preparation and application of nanoparticles and nanofibres with natural UV filters
Plachá, Monika ; Matoušková, Petra (referee) ; Márová, Ivana (advisor)
The presented diploma thesis is focused on preparation of nanoparticles and nanofibres with natural UV filters. Liposomes with encapsulated aqueous, ethanol and lipid extracts were prepared. Nanofibers from PHB containing lipid extract were prepared too. As a part of this work, an overview of natural sources with potential effects as UV filters were introduced. Moreover, nanoparticles and nanofibers and methods of their characterization were described. Size, polydisperse index and colloid stability of prepared nanoparticles were characterized via DLS. In experimental part aqueous, ethanol and lipid extracts were prepared from roasted coffee, green coffee and cascara. These extracts were spectrophotometrically characterized for the content of polyphenols, flavonoids, antioxidant activity, tannins and their SPF. Liposomes and liposomes containing PHB with these extracts were prepared and the encapsulation effectivity, short–term and long–term stability as well as SPF of nanoparticles were determined. Nanofibers from PHB containing lipid extracts were prepared via electrospinning and forcespinning methods. Prepared nanofibers were examined via FTIR–ATR. Antioxidant activity, short–term and long–term stability were determined spectrophotometrically. From selected nanoparticles, emulsions and gels were prepared and their SPF was also determined. Three types of emulsions with the best SPF were selected and tested on volunteers. Sedimentation stability of emulsions was tested by analytical centrifuge. Finally, cytotoxicity of selected nanoparticles and nanofibers was tested via MTT assay using human keratinocytes.
Nanofibre membranes as carriers of drug 10.
Nguyenová, Jana ; Doležal, Pavel (advisor) ; Dittrich, Milan (referee)
The theoretical part of thesis provides information on the biopharmaceutical classification system of drugs and its context in the research and development of pharmaceuticals. The methods used to increase the solubility and acceleration including electrospinning are presented. The experimental part is the pilot study on the evaluation of conditions suitable for dissolution testing of newly prepared nanofibers made from polyvinylpyrrolidone membranes with a high content (up to 35 per cent) gatrin as a substance poorly soluble in aqueous vehicles. The parameters of determination of gatrin by HPLC using C18 sorbent and a mobile phase of acetonitrile: phosphate buffer pH 8 were preliminarily evaluated as perfectly applicable to vehicle type-phosphate buffer pH 6.0. The same conditions were found to be in a severe collision with a polymer material of nanofibrous membrane during the dissolution evaluation or with acetonitrile in the mobile phase, an accurate determination of gatrin was not obtained in this case. These findings lead to the proposal to change the formulation of the nanofiber membranes using polymer different from polyvinylpyrrolidone (eg. hydroxypropylcellulose) or the replacement of acetonitrile for methanol at the mobile phase for HPLC. However, in all cases, all the analytically...

National Repository of Grey Literature : 16 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.