Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Production of Selected Microbial Metabolites and Energy Using Different Waste Materials
Petrik, Siniša ; Rychtera, Mojmír (oponent) ; Němec, Miroslav (oponent) ; Pekař, Miloslav (oponent) ; Márová, Ivana (vedoucí práce)
Wide spectrum of different options available for the treatment and management of waste substrates can be used. Variety of methods and technologies available to carry out material and energy recovery originates a number of “recovery paths”. One of the solutions for recovering some waste materials lies in white (or industrial) biotechnology, which involves metabolic activities of a wide range of different microorganisms and their specific biological conversion. In this work several waste materials (mainly obtained from agro-industry) were used in a comparative screening study to evaluate their potential recovery to a valuable metabolites or energy by various microorganisms applied under specific conditions and circumstances. Presented study was focused on a comparison of growth and production properties of several red yeast strains of the genus Rhodotorula, Sporobolomyces and Cystofilobasidium, when cultivated on glycerol media (technical and waste glycerol), on wheat straw media and residues gained after hydrothermal pretreatment and on media enriched with whey. All tested red yeast strains were able to utilize glycerol as the only carbon source. The biomass production, when cultivated on pure technical glycerol, are less or more equal with control (about 7 - 10 gl-1) while in waste glycerolis even higher (10.9 - 14.5 gl-1).Production of carotenoids and ergosterol was better in glucose medium than in medium with glycerol only. All tested red yeast strains were able to produce also neutral lipids, in range of 11–15 % except C.capitatum, which produced more than 22 % of neutral lipids. Further waste products - both fraction after hydrothermal wheat pretreatment process (filter cake and hydrolysate) and untreated wheat straw were utilized for red yeast cultivation. Wheat straw (as well as pretreated materials) has proved to be promise substrate with a bigger potential for biomass and metabolite production, especially in S. roseus strain. Whey, as a surplus product from dairy, can be effectively utilized by synergic activities of carotenogenic yeasts and lactic acid bacteria. Co-cultivation process could lead to overproduction of pigments and ergosterol and, therefore, obtained biomass (enriched also with L. casei bacteria) will increase overall quality. In this thesis, the operating microbe which shall be involved in the process of energy recovery represents a mixture of bacteria obtained from the waste water plant. Those microbes played main role in Microbial Fuel Cell (MFC), producing electrical energy and cleaning waste water at once. Electricity is being generated in a direct way from organic matter and can be used for operation of the waste treatment plant, or sold to the energy market.
Production of Selected Microbial Metabolites and Energy Using Different Waste Materials
Petrik, Siniša ; Rychtera, Mojmír (oponent) ; Němec, Miroslav (oponent) ; Pekař, Miloslav (oponent) ; Márová, Ivana (vedoucí práce)
Wide spectrum of different options available for the treatment and management of waste substrates can be used. Variety of methods and technologies available to carry out material and energy recovery originates a number of “recovery paths”. One of the solutions for recovering some waste materials lies in white (or industrial) biotechnology, which involves metabolic activities of a wide range of different microorganisms and their specific biological conversion. In this work several waste materials (mainly obtained from agro-industry) were used in a comparative screening study to evaluate their potential recovery to a valuable metabolites or energy by various microorganisms applied under specific conditions and circumstances. Presented study was focused on a comparison of growth and production properties of several red yeast strains of the genus Rhodotorula, Sporobolomyces and Cystofilobasidium, when cultivated on glycerol media (technical and waste glycerol), on wheat straw media and residues gained after hydrothermal pretreatment and on media enriched with whey. All tested red yeast strains were able to utilize glycerol as the only carbon source. The biomass production, when cultivated on pure technical glycerol, are less or more equal with control (about 7 - 10 gl-1) while in waste glycerolis even higher (10.9 - 14.5 gl-1).Production of carotenoids and ergosterol was better in glucose medium than in medium with glycerol only. All tested red yeast strains were able to produce also neutral lipids, in range of 11–15 % except C.capitatum, which produced more than 22 % of neutral lipids. Further waste products - both fraction after hydrothermal wheat pretreatment process (filter cake and hydrolysate) and untreated wheat straw were utilized for red yeast cultivation. Wheat straw (as well as pretreated materials) has proved to be promise substrate with a bigger potential for biomass and metabolite production, especially in S. roseus strain. Whey, as a surplus product from dairy, can be effectively utilized by synergic activities of carotenogenic yeasts and lactic acid bacteria. Co-cultivation process could lead to overproduction of pigments and ergosterol and, therefore, obtained biomass (enriched also with L. casei bacteria) will increase overall quality. In this thesis, the operating microbe which shall be involved in the process of energy recovery represents a mixture of bacteria obtained from the waste water plant. Those microbes played main role in Microbial Fuel Cell (MFC), producing electrical energy and cleaning waste water at once. Electricity is being generated in a direct way from organic matter and can be used for operation of the waste treatment plant, or sold to the energy market.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.