|
Where and how much water do trees transport? Modelling the impact of spruce and beech stands on soil water fluxes during extreme climatic conditions
Zelíková, Nikol ; Šípek, Václav
Soil moisture links processes that influence the entire hydrological cycle and thus the availability of water resources. One important factor influencing these processes is the presence of vegetation. Research on the interactions between vegetation, its management and the processes affecting soil water fluxes is of particular importance in times of ongoing climate change and land cover changes. However, the complexity of these interactions, further influenced by differences between plant species, makes this research more difficult. Land cover change is also taking place in Czechia, specifically in the replacement of spruce monocultures by beech. Therefore, this study investigates the influence of two types of forest stands, spruce (Picea abies) and beech (Fagus sylvatica), on the soil water regime in the experimental Liz catchment in Bohemian Forest, Czechia. This was performed by (1) evaluating differences in soil moisture based on twenty years of measured data and (2) obtaining the two components of the soil water balance (transpiration and percolation) at two plots (beech and spruce) using a soil water balance model. Analysis of the long-term soil moisture data show slightly lower soil moisture values under the beech stands, which disappear when comparing the annual mean values. Differences are evident when evaluating average soil moisture data with depth, where the topmost layer of the soil profile at the spruce site has on average 6% higher soil water content than beech. At the start of the growing season the soil moisture was initially drier under spruce, due to its earlier start of transpiration. This difference was reduced over the season by the intensive transpiration of beech. The outputs of the balance model indicated a higher rate of actual evapotranspiration of beech and a higher rate of percolation of spruce every year. This effect was more pronounced over the dry years, whereas in years with sufficient rainfall the differences were minimal. Thus, the replacement of spruce trees by beech trees may affect the rate of groundwater recharge.
|