National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Orbital and internal dynamics of terrestrial planets
Walterová, Michaela ; Běhounková, Marie (advisor) ; Efroimsky, Michael (referee) ; Brož, Miroslav (referee)
Title: Orbital and internal dynamics of terrestrial planets Author: Michaela Walterová Department: Department of Geophysics Supervisor: RNDr. Marie Běhounková, Ph.D., Department of Geophysics Abstract: Close-in exoplanets are subjected to intense tidal interaction with the host star and their secular evolution is strongly affected by the resulting tidal dissipation. The tidal dissipation not only provides an additional heat source for the planet's internal dynamics but it also contributes to the evolution of the planet's spin rate and orbital elements. At the same time, the tidal dissipation itself is also determined by the planet's thermal state and by the spin-orbital parameters. The evolutions of the orbit and of the interior are, therefore, intrinsically linked. In this work, we combine analytical and numerical techniques to gain insight into the interconnection between the internal properties and the orbital evolution, with special focus on the role of tides. After a general study of parametric dependencies of the tidal heating and tidal locking, we present a semi-analytical model assessing the coupled tidally-induced thermal-orbital evolution in systems consisting of a host star and one or two planets. Specifically, we study the thermal-orbital evolution in three systems inspired by existing low-mass...
Evolution of terrestrial exoplanets
Káňová, Michaela ; Běhounková, Marie (advisor) ; Čadek, Ondřej (referee)
Observations of terrestrial exoplanets provide a unique statistical set that may improve our knowl- edge of their formation, structure as well as internal and orbital evolution. Close-in extrasolar planets are subjected to strong stellar tides, resulting in an extensive dissipation of mechanical energy (tidal heating), long-term orbital evolution and evolution of the rotational frequency. For the exoplanets on eccentric orbits, the traditional tidal theories predict locking into pseudo-synchronous spin states, for which the rotational frequency is slightly higher than the orbital frequency. Such predictions are, how- ever, in contradiction with the observations of moons in the Solar system, and are a consequence of simplified rheological assumptions. Here, we focus on a numerical approach to the tidal evolution of planetary orbit and rotation in a single-planet system, assuming a Maxwell viscoelastic rheology. We find equillibrium spin states, including the spin-orbit resonances, and discuss their connection with the minima of tidal heating. Locking into a spin-orbit resonance results in an irregular insolation pattern and an unequal surface temperature distribution, affecting the internal dynamics of the planet. The second part of the thesis therefore deals with the evaluation of the surface temperature and...
Orbital and internal dynamics of terrestrial planets
Walterová, Michaela ; Běhounková, Marie (advisor) ; Efroimsky, Michael (referee) ; Brož, Miroslav (referee)
Title: Orbital and internal dynamics of terrestrial planets Author: Michaela Walterová Department: Department of Geophysics Supervisor: RNDr. Marie Běhounková, Ph.D., Department of Geophysics Abstract: Close-in exoplanets are subjected to intense tidal interaction with the host star and their secular evolution is strongly affected by the resulting tidal dissipation. The tidal dissipation not only provides an additional heat source for the planet's internal dynamics but it also contributes to the evolution of the planet's spin rate and orbital elements. At the same time, the tidal dissipation itself is also determined by the planet's thermal state and by the spin-orbital parameters. The evolutions of the orbit and of the interior are, therefore, intrinsically linked. In this work, we combine analytical and numerical techniques to gain insight into the interconnection between the internal properties and the orbital evolution, with special focus on the role of tides. After a general study of parametric dependencies of the tidal heating and tidal locking, we present a semi-analytical model assessing the coupled tidally-induced thermal-orbital evolution in systems consisting of a host star and one or two planets. Specifically, we study the thermal-orbital evolution in three systems inspired by existing low-mass...
Evolution of terrestrial exoplanets
Káňová, Michaela ; Běhounková, Marie (advisor) ; Čadek, Ondřej (referee)
Observations of terrestrial exoplanets provide a unique statistical set that may improve our knowl- edge of their formation, structure as well as internal and orbital evolution. Close-in extrasolar planets are subjected to strong stellar tides, resulting in an extensive dissipation of mechanical energy (tidal heating), long-term orbital evolution and evolution of the rotational frequency. For the exoplanets on eccentric orbits, the traditional tidal theories predict locking into pseudo-synchronous spin states, for which the rotational frequency is slightly higher than the orbital frequency. Such predictions are, how- ever, in contradiction with the observations of moons in the Solar system, and are a consequence of simplified rheological assumptions. Here, we focus on a numerical approach to the tidal evolution of planetary orbit and rotation in a single-planet system, assuming a Maxwell viscoelastic rheology. We find equillibrium spin states, including the spin-orbit resonances, and discuss their connection with the minima of tidal heating. Locking into a spin-orbit resonance results in an irregular insolation pattern and an unequal surface temperature distribution, affecting the internal dynamics of the planet. The second part of the thesis therefore deals with the evaluation of the surface temperature and...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.