National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Vliv plazmatem aktivované vody na vybrané půdní vlastnosti u různých půdních typů
Voldán, Fabián
The diploma thesis ,,The effect of the application of plasma-activated water on se-lected soil properties in different soil types” researched the effect of the application of plasmatic activated water (PAW) on six different location. This diploma thesis researched soil conductivity and soil reaction. The samples were taken from thirteen locations in autumn 2020. In the year 2021 was done container experiment with application PAW and distilled water. One of the samples was inspecting sample without application PAW and distilled water. This experiment was repeated in the year 2022. The PAW was made from distilled water in DBD system with liquid electrode. Based on the results it follows that the application of PAW is addicted on the soil properties. Although the PAW was applicated in the high dose no significant changes which should result in the end of the use of PAW in agriculture or in other environmental sector.
Mechanism of atomization of selected hydride forming elements in an externally heated quartz tube atomizer and a dielectric barrier discharge atomizer
Juhászová, Lucie ; Kratzer, Jan (advisor) ; Hrdlička, Aleš (referee)
Atomization conditions for tin hydride in the planar dielectric barrier discharge (DBD) plasma atomizer were optimized with detection by atomic absorption spectrometry (AAS). The effects of apparatus arrangement such as the shape of a waveform function of the high voltage power supply source, DBD atomizer design as well as presence of a dryer tube filled with NaOH pellets to prevent residual aerosol and moisture transport into the DBD were investigated in detail. The optimal experimental setup consisted of a square wave high voltage power supply source coupled to a DBD with vapor-deposited electrodes in the presence of NaOH dryer upstream the DBD atomizer. Argon was found as the best discharge gas under a flow rate of 120 mL min-1 while the DBD optimum high voltage supply rate was 7 kV. A sensitivity of 0.05 s ng-1 Sn and a limit of detection of 1.1 ng mL-1 Sn were reached under optimized conditions. Optimization of the whole experimental setup resulted in 7-fold improvement of sensitivity compared to the original arrangement consisting of a sinusoidal source coupled to a DBD atomizer with glued electrodes in absence of the dryer. Keywords atomic absorption spectrometry, hydride generation, hydride atomization, quart tube atomizer, dielectric barrier discharge (DBD)
Mechanism of atomization of selected hydride forming elements in an externally heated quartz tube atomizer and a dielectric barrier discharge atomizer
Juhászová, Lucie ; Kratzer, Jan (advisor) ; Hrdlička, Aleš (referee)
Atomization conditions for tin hydride in the planar dielectric barrier discharge (DBD) plasma atomizer were optimized with detection by atomic absorption spectrometry (AAS). The effects of apparatus arrangement such as the shape of a waveform function of the high voltage power supply source, DBD atomizer design as well as presence of a dryer tube filled with NaOH pellets to prevent residual aerosol and moisture transport into the DBD were investigated in detail. The optimal experimental setup consisted of a square wave high voltage power supply source coupled to a DBD with vapor-deposited electrodes in the presence of NaOH dryer upstream the DBD atomizer. Argon was found as the best discharge gas under a flow rate of 120 mL min-1 while the DBD optimum high voltage supply rate was 7 kV. A sensitivity of 0.05 s ng-1 Sn and a limit of detection of 1.1 ng mL-1 Sn were reached under optimized conditions. Optimization of the whole experimental setup resulted in 7-fold improvement of sensitivity compared to the original arrangement consisting of a sinusoidal source coupled to a DBD atomizer with glued electrodes in absence of the dryer. Keywords atomic absorption spectrometry, hydride generation, hydride atomization, quart tube atomizer, dielectric barrier discharge (DBD)

Interested in being notified about new results for this query?
Subscribe to the RSS feed.