National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
In vitro study of newly synthesized potential cardioprotective drugs
Liptáková, Lucie ; Hašková, Pavlína (advisor) ; Macháček, Miloslav (referee)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Lucie Liptáková Supervisor: RNDr. Pavlína Hašková, Ph.D. Title of master thesis: In vitro study of newly synthesized potential cardioprotective drugs Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are in an organism generated under normal or pathological conditions. There are antioxidant mechanisms, which protects the organism from their harmful effect. In case of imbalance between ROS/RNS production and antioxidant mechanisms, an oxidative stress is initiated. The oxidative stress is involved in the pathogenesis of many diseases, including cardiovascular desease. In consequence of higher presence of mitochondria and lower presence of antioxidants cardiomyocytes are more sensitive to the oxidative stress. Iron, by catalysing radical's reactions, significantly participates on formation and development of oxidative stress. Elimination of the free iron by iron chelators is one option how to prevent or moderate oxidative stress. The aim of this master theses was to study cardioprotective effect in presence of H2O2 and own toxicity of newly synthetized aroylhydrazone iron chelators (H21, H22, H23, H24, H25 and H26) on rat embryotic cardiomyoblasts H9c2. Protective and toxic...
In vitro study of newly synthesized potential cardioprotective drugs
Liptáková, Lucie ; Hašková, Pavlína (advisor) ; Macháček, Miloslav (referee)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Lucie Liptáková Supervisor: RNDr. Pavlína Hašková, Ph.D. Title of master thesis: In vitro study of newly synthesized potential cardioprotective drugs Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are in an organism generated under normal or pathological conditions. There are antioxidant mechanisms, which protects the organism from their harmful effect. In case of imbalance between ROS/RNS production and antioxidant mechanisms, an oxidative stress is initiated. The oxidative stress is involved in the pathogenesis of many diseases, including cardiovascular desease. In consequence of higher presence of mitochondria and lower presence of antioxidants cardiomyocytes are more sensitive to the oxidative stress. Iron, by catalysing radical's reactions, significantly participates on formation and development of oxidative stress. Elimination of the free iron by iron chelators is one option how to prevent or moderate oxidative stress. The aim of this master theses was to study cardioprotective effect in presence of H2O2 and own toxicity of newly synthetized aroylhydrazone iron chelators (H21, H22, H23, H24, H25 and H26) on rat embryotic cardiomyoblasts H9c2. Protective and toxic...
In vitro study of newly synthesized potential cardioprotective drugs
Liptáková, Lucie ; Hašková, Pavlína (advisor) ; Macháček, Miloslav (referee)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Lucie Liptáková Supervisor: RNDr. Pavlína Hašková, Ph.D. Title of master thesis: In vitro study of newly synthesized potential cardioprotective drugs Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are in an organism generated under normal or pathological conditions. There are antioxidant mechanisms, which protects the organism from their harmful effect. In case of imbalance between ROS/RNS production and antioxidant mechanisms, an oxidative stress is initiated. The oxidative stress is involved in the pathogenesis of many diseases, including cardiovascular desease. In consequence of higher presence of mitochondria and lower presence of antioxidants cardiomyocytes are more sensitive to the oxidative stress. Iron, by catalysing radical's reactions, significantly participates on formation and development of oxidative stress. Elimination of the free iron by iron chelators is one option how to prevent or moderate oxidative stress. The aim of this master theses was to study cardioprotective effect in presence of H2O2 and own toxicity of newly synthetized aroylhydrazone iron chelators (H21, H22, H23, H24, H25 and H26) on rat embryotic cardiomyoblasts H9c2. Protective and toxic...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.